
If $\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{pq}}{{rs}}$, then what is the value of $\dfrac{{p - q}}{{p + q}}$ in terms of $r$ and $s$?
1) $\dfrac{{r + s}}{{r - s}}$
2) $\dfrac{{r - s}}{{r + s}}$
3) $\dfrac{{r + s}}{{rs}}$
4) $\dfrac{{rs}}{{r - s}}$
Answer
589.2k+ views
Hint: We are given that $\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{pq}}{{rs}}$. We know that if $\dfrac{x}{y} = \dfrac{m}{n}$, then $\dfrac{{x + m}}{{y + n}} = \dfrac{m}{n}$ and $\dfrac{{x - m}}{{y - n}} = \dfrac{m}{n}$. We will use this properties to form the formula of ${a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}$ and ${a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2}$ and simplify the equation. Divide the equations and rearrange it to find the value of $\dfrac{{p - q}}{{p + q}}$
Complete step by step answer:
We are given that $\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{pq}}{{rs}}$,
Simplify the expression using the rules of ratio
We will multiply the numerator and denominator of R.H.S as,
$\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{2pq}}{{2rs}}$
Now, if $\dfrac{x}{y} = \dfrac{m}{n}$, then $\dfrac{{x + m}}{{y + n}} = \dfrac{m}{n}$
Then, $\dfrac{{\left( {{p^2} + {q^2} + 2pq} \right)}}{{\left( {{r^2} + {s^2} + 2rs} \right)}} = \dfrac{{2pq}}{{2rs}}$ which is equal to
$\dfrac{{\left( {{p^2} + {q^2} + 2pq} \right)}}{{\left( {{r^2} + {s^2} + 2rs} \right)}} = \dfrac{{pq}}{{rs}}$
Now, we know that ${a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}$
Then,
$\dfrac{{{{\left( {p + q} \right)}^2}}}{{{{\left( {r + s} \right)}^2}}} = \dfrac{{pq}}{{rs}}$ eq(1)
Similarly, $\dfrac{{\left( {{p^2} + {q^2} - 2pq} \right)}}{{\left( {{r^2} + {s^2} - 2rs} \right)}} = \dfrac{{pq}}{{rs}}$
Also, ${a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2}$
Then,
$\dfrac{{{{\left( {p - q} \right)}^2}}}{{{{\left( {r - s} \right)}^2}}} = \dfrac{{pq}}{{rs}}$ eq(2)
From equation (1) and (2), we will get,
$\dfrac{{{{\left( {p + q} \right)}^2}}}{{{{\left( {r + s} \right)}^2}}} = \dfrac{{{{\left( {p - q} \right)}^2}}}{{{{\left( {r - s} \right)}^2}}}$
Taking square roots on both sides,
$\dfrac{{p - q}}{{r - s}} = \dfrac{{p + q}}{{r + s}}$
But, we want to find the value of $\dfrac{{p - q}}{{p + q}}$, then we can write the above equation as
$\dfrac{{p - q}}{{p + q}} = \dfrac{{r - s}}{{r + s}}$
Therefore the value of $\dfrac{{p - q}}{{p + q}}$ is $\dfrac{{r - s}}{{r + s}}$
Hence, option (2) is correct.
Note: We can multiply or divide by the same number in ratio except 0 and the ratio will remain unchanged. If a constant number is added or subtracted to the ratio, then also the ratio remains the same. These properties will help to simplify the equations. There are various other properties of ratio like compenendo and divedendo.
Complete step by step answer:
We are given that $\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{pq}}{{rs}}$,
Simplify the expression using the rules of ratio
We will multiply the numerator and denominator of R.H.S as,
$\dfrac{{\left( {{p^2} + {q^2}} \right)}}{{\left( {{r^2} + {s^2}} \right)}} = \dfrac{{2pq}}{{2rs}}$
Now, if $\dfrac{x}{y} = \dfrac{m}{n}$, then $\dfrac{{x + m}}{{y + n}} = \dfrac{m}{n}$
Then, $\dfrac{{\left( {{p^2} + {q^2} + 2pq} \right)}}{{\left( {{r^2} + {s^2} + 2rs} \right)}} = \dfrac{{2pq}}{{2rs}}$ which is equal to
$\dfrac{{\left( {{p^2} + {q^2} + 2pq} \right)}}{{\left( {{r^2} + {s^2} + 2rs} \right)}} = \dfrac{{pq}}{{rs}}$
Now, we know that ${a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}$
Then,
$\dfrac{{{{\left( {p + q} \right)}^2}}}{{{{\left( {r + s} \right)}^2}}} = \dfrac{{pq}}{{rs}}$ eq(1)
Similarly, $\dfrac{{\left( {{p^2} + {q^2} - 2pq} \right)}}{{\left( {{r^2} + {s^2} - 2rs} \right)}} = \dfrac{{pq}}{{rs}}$
Also, ${a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2}$
Then,
$\dfrac{{{{\left( {p - q} \right)}^2}}}{{{{\left( {r - s} \right)}^2}}} = \dfrac{{pq}}{{rs}}$ eq(2)
From equation (1) and (2), we will get,
$\dfrac{{{{\left( {p + q} \right)}^2}}}{{{{\left( {r + s} \right)}^2}}} = \dfrac{{{{\left( {p - q} \right)}^2}}}{{{{\left( {r - s} \right)}^2}}}$
Taking square roots on both sides,
$\dfrac{{p - q}}{{r - s}} = \dfrac{{p + q}}{{r + s}}$
But, we want to find the value of $\dfrac{{p - q}}{{p + q}}$, then we can write the above equation as
$\dfrac{{p - q}}{{p + q}} = \dfrac{{r - s}}{{r + s}}$
Therefore the value of $\dfrac{{p - q}}{{p + q}}$ is $\dfrac{{r - s}}{{r + s}}$
Hence, option (2) is correct.
Note: We can multiply or divide by the same number in ratio except 0 and the ratio will remain unchanged. If a constant number is added or subtracted to the ratio, then also the ratio remains the same. These properties will help to simplify the equations. There are various other properties of ratio like compenendo and divedendo.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

