
If $\dfrac{{\cos \alpha }}{{\sin \beta }} = n$ and $\dfrac{{\cos \alpha }}{{\cos \beta }} = m$ then find the value of ${\cos ^2}\beta $ is
A. $\dfrac{1}{{{m^2} + {n^2}}}$
B. $\dfrac{{{m^2}}}{{{m^2} + {n^2}}}$
C. $\dfrac{{{n^2}}}{{{m^2} + {n^2}}}$
D. $0$
Answer
598.2k+ views
Hint: In order to solve the trigonometry function we have to first see what is the requirement of the question and according to that we have to apply some arithmetic operations to get the final value. We can do division, square on the equation to get the required answer.
Complete step-by-step answer:
Given that $\dfrac{{\cos \alpha }}{{\sin \beta }} = n$ and $\dfrac{{\cos \alpha }}{{\cos \beta }} = m$
Let us assume
$\dfrac{{\cos \alpha }}{{\sin \beta }} = n \to (1)$
$\dfrac{{\cos \alpha }}{{\cos \beta }} = m \to (2)$
When we do equation $\dfrac{{(2)}}{{(1)}}$ we get
$
\dfrac{{\dfrac{{\cos \alpha }}{{\cos \beta }}}}{{\dfrac{{\cos \alpha }}{{\sin \beta }}}} = \dfrac{m}{n} \\
\Rightarrow \dfrac{{\cos \alpha }}{{\cos \beta }} \times \dfrac{{\sin \beta }}{{\cos \alpha }} = \dfrac{m}{n} \\
\Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\
$
By doing square both side we get
$
\Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\
\Rightarrow {\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)^2} = {\left( {\dfrac{m}{n}} \right)^2} \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) \\
$
By adding \[1\] both side we get
$
\\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\beta }}{{{{\cos }^2}\beta }}} \right) + 1 = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) + 1 \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\beta + {{\cos }^2}\beta }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\
\because ({\sin ^2}\beta + {\cos ^2}\beta = 1) \\
\Rightarrow \left( {\dfrac{1}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\
$
By cross multiplication of the above equation we get
$
{n^2}(1) = ({m^2} + {n^2})({\cos ^2}\beta ) \\
\Rightarrow \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) = {\cos ^2}\beta \\
$
So here we can see that we get
$
\\
{\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) \\
$
Hence, \[{\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right)\] .
Therefore C is the correct option.
Note- For solving trigonometry functions we should know about their relationship. There are three main relations which can be used to solve trigonometry questions that is $({\sin ^2}\theta + {\cos ^2}\theta = 1),$ $({\sec ^2}\theta = 1 + {\tan ^2}\theta )$ and $(\cos e{c^2}\theta = 1 + {\cot ^2}\theta )$ We can also prove it by using basic trigonometric properties.
Complete step-by-step answer:
Given that $\dfrac{{\cos \alpha }}{{\sin \beta }} = n$ and $\dfrac{{\cos \alpha }}{{\cos \beta }} = m$
Let us assume
$\dfrac{{\cos \alpha }}{{\sin \beta }} = n \to (1)$
$\dfrac{{\cos \alpha }}{{\cos \beta }} = m \to (2)$
When we do equation $\dfrac{{(2)}}{{(1)}}$ we get
$
\dfrac{{\dfrac{{\cos \alpha }}{{\cos \beta }}}}{{\dfrac{{\cos \alpha }}{{\sin \beta }}}} = \dfrac{m}{n} \\
\Rightarrow \dfrac{{\cos \alpha }}{{\cos \beta }} \times \dfrac{{\sin \beta }}{{\cos \alpha }} = \dfrac{m}{n} \\
\Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\
$
By doing square both side we get
$
\Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\
\Rightarrow {\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)^2} = {\left( {\dfrac{m}{n}} \right)^2} \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) \\
$
By adding \[1\] both side we get
$
\\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\beta }}{{{{\cos }^2}\beta }}} \right) + 1 = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) + 1 \\
\Rightarrow \left( {\dfrac{{{{\sin }^2}\beta + {{\cos }^2}\beta }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\
\because ({\sin ^2}\beta + {\cos ^2}\beta = 1) \\
\Rightarrow \left( {\dfrac{1}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\
$
By cross multiplication of the above equation we get
$
{n^2}(1) = ({m^2} + {n^2})({\cos ^2}\beta ) \\
\Rightarrow \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) = {\cos ^2}\beta \\
$
So here we can see that we get
$
\\
{\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) \\
$
Hence, \[{\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right)\] .
Therefore C is the correct option.
Note- For solving trigonometry functions we should know about their relationship. There are three main relations which can be used to solve trigonometry questions that is $({\sin ^2}\theta + {\cos ^2}\theta = 1),$ $({\sec ^2}\theta = 1 + {\tan ^2}\theta )$ and $(\cos e{c^2}\theta = 1 + {\cot ^2}\theta )$ We can also prove it by using basic trigonometric properties.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

10 examples of friction in our daily life

