
If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$, prove that $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$
Answer
618.6k+ views
Hint: Here we will prove the equation by simplifying the LHS and getting the result as the RHS through the given condition.
Complete step-by-step answer:
You have to prove If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$ then $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$.
Taking L.H.S we have
$\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}}$.
Taking ${a^4}$common from Numerator and ${b^4}$from the denominator.
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} \to (1)$
Since we have \[\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} \Rightarrow \dfrac{a}{b} = \dfrac{e}{f} \Rightarrow \dfrac{e}{a} = \dfrac{f}{b}\]
Put this value in numerator of equation 1
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}}}{{{b^4}}} = R.H.S$
Hence, L.H.S=R.H.S.
Note: In this type of question what you have to prove takes common from Numerator and denominator and then simplify according to given condition, you will get your answer.
Complete step-by-step answer:
You have to prove If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$ then $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$.
Taking L.H.S we have
$\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}}$.
Taking ${a^4}$common from Numerator and ${b^4}$from the denominator.
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} \to (1)$
Since we have \[\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} \Rightarrow \dfrac{a}{b} = \dfrac{e}{f} \Rightarrow \dfrac{e}{a} = \dfrac{f}{b}\]
Put this value in numerator of equation 1
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}}}{{{b^4}}} = R.H.S$
Hence, L.H.S=R.H.S.
Note: In this type of question what you have to prove takes common from Numerator and denominator and then simplify according to given condition, you will get your answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

