
If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$, prove that $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$
Answer
618k+ views
Hint: Here we will prove the equation by simplifying the LHS and getting the result as the RHS through the given condition.
Complete step-by-step answer:
You have to prove If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$ then $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$.
Taking L.H.S we have
$\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}}$.
Taking ${a^4}$common from Numerator and ${b^4}$from the denominator.
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} \to (1)$
Since we have \[\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} \Rightarrow \dfrac{a}{b} = \dfrac{e}{f} \Rightarrow \dfrac{e}{a} = \dfrac{f}{b}\]
Put this value in numerator of equation 1
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}}}{{{b^4}}} = R.H.S$
Hence, L.H.S=R.H.S.
Note: In this type of question what you have to prove takes common from Numerator and denominator and then simplify according to given condition, you will get your answer.
Complete step-by-step answer:
You have to prove If $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}$ then $\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}} = \dfrac{{{a^4}}}{{{b^4}}}$.
Taking L.H.S we have
$\dfrac{{2{a^4}{b^2} + 3{a^2}{e^2} - 5{e^4}f}}{{2{b^6} + 3{b^2}{f^2} - 5{f^5}}}$.
Taking ${a^4}$common from Numerator and ${b^4}$from the denominator.
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} \to (1)$
Since we have \[\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} \Rightarrow \dfrac{a}{b} = \dfrac{e}{f} \Rightarrow \dfrac{e}{a} = \dfrac{f}{b}\]
Put this value in numerator of equation 1
$ \Rightarrow \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{e^2}}}{{{a^2}}} - 5\dfrac{{{e^4}}}{{{a^4}}}f)}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}}{{{b^4}(2{b^2} + 3\dfrac{{{f^2}}}{{{b^2}}} - 5\dfrac{{{f^5}}}{{{b^4}}})}} = \dfrac{{{a^4}}}{{{b^4}}} = R.H.S$
Hence, L.H.S=R.H.S.
Note: In this type of question what you have to prove takes common from Numerator and denominator and then simplify according to given condition, you will get your answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

