
If $D = \left| {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &\delta \end{array}} \right|$, then \[\left| {\begin{array}{*{20}{c}} {2\alpha }&{2\beta } \\ {2\gamma }&{2\delta } \end{array}} \right|\] is equal to
Answer
564.9k+ views
Hint: It is given in the question that if $D = \left| {\begin{array}{*{20}{c}}
Complete step-by-step answer:
Note: Students frequently get confused while attempting to distinguish between the properties of a matrix and a determinant. In a matrix we take n common from each element of the matrix. In determinants, we take n common values from each row or column.
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$
Then, what is the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ .
First, we will assume the $\alpha ,\beta ,\gamma ,\delta $ and put it in the $\left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$ , then after, we will put the value of $\alpha ,\beta ,\gamma ,\delta $ in the $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ and finally, after solving further, we will get the answer.
It is given in the question that if $D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$
Then, what is the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ .
Let us assume $\alpha = 1,\beta = 2,\gamma = 3,\delta = 4$ .
Now, put the value of $\alpha ,\beta ,\gamma ,\delta $ in the equation $D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$ , we get,
$\therefore D = \left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$ .
Similarly, Put the value of $\alpha ,\beta ,\gamma ,\delta $ in the $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ , we get,
$ = \left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{2\left( 1 \right)}&{2\left( 2 \right)} \\
{2\left( 3 \right)}&{2\left( 4 \right)}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right|$
Now, take out 2 common from the row 1 of the determinant.
$ = 2\left| {\begin{array}{*{20}{c}}
1&2 \\
6&8
\end{array}} \right|$
Now, take out 2 from row 2 of the determinant.
$ = 2 \times 2\left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$
$ = 4\left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$
=4D
Therefore, the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right| = 4D$ .
For example: in any matrix $A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&1
\end{array}} \right]$ , $nA = \left[ {\begin{array}{*{20}{c}}
n&n \\
n&n
\end{array}} \right]$ , so $\left[ {nA} \right] = n\left[ A \right]$ and
In any determinant $B = \left| {\begin{array}{*{20}{c}}
1&1 \\
1&1
\end{array}} \right|$ , $nB = \left| {\begin{array}{*{20}{c}}
n&n \\
n&n
\end{array}} \right|$ , so $\left| {nB} \right| = {n^m}\left| B \right|$ , where m is the order of determinant B.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

