
If \[\csc \theta +\cot \theta =P\], then prove that, \[\cos \theta =\dfrac{{{P}^{2}}-1}{{{P}^{2}}+1}\].
Answer
617.7k+ views
Hint: Find the inverse of \[\csc \theta \] and \[\cot \theta \]. Substitute them in the equation given and simplify it. Square the expression formed and simplify it using trigonometric identities to prove the value of \[\cos \theta \] required.
Complete step-by-step answer:
Given that, \[\csc \theta +\cot \theta =P-(1)\]
We know the basic trigonometric formulae where,
\[\csc =\dfrac{1}{\sin \theta }\]and \[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{\sin \theta }{\cos \theta }}=\dfrac{\cos \theta }{\sin \theta }\].
Now let us substitute the value of \[\csc \theta \]and \[\cot \theta \]in equation (1).
\[\begin{align}
& \csc \theta +\cot \theta =P \\
& \Rightarrow \dfrac{1}{\sin \theta }+\dfrac{\cos \theta }{\sin \theta }=P \\
& \dfrac{1+\cos \theta }{\sin \theta }=P \\
\end{align}\]
Thus we can write that, \[1+\cos \theta =P\sin \theta \].
Now let us square both sides of the expression, \[{{\left( 1+\cos \theta \right)}^{2}}={{\left( P\sin \theta \right)}^{2}}\].
We know that, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\left( 1-{{\cos }^{2}}\theta \right)\]is of the form \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\].
So, \[\left( 1-{{\cos }^{2}}\theta \right)\]can be written as, \[\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)\].
\[\begin{align}
& \therefore {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}{{\sin }^{2}}\theta \\
& {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}\left( 1-{{\cos }^{2}}\theta \right) \\
& \therefore {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}\left( 1-\cos \theta \right)\left( 1+\cos \theta \right) \\
\end{align}\]
We can cancel out \[\left( 1+\cos \theta \right)\]from LHS and RHS of the equation.
Thus we get,
\[\begin{align}
& 1+\cos \theta ={{P}^{2}}\left( 1-\cos \theta \right) \\
& \Rightarrow 1+\cos \theta ={{P}^{2}}-{{P}^{2}}\cos \theta \\
\end{align}\]
Let us rearrange the above expression,
\[\begin{align}
& \cos \theta +{{P}^{2}}\cos \theta ={{P}^{2}}-1 \\
& \cos \theta \left( 1+{{P}^{2}} \right)={{P}^{2}}-1 \\
& \cos \theta \left( {{P}^{2}}+1 \right)={{P}^{2}}-1 \\
& \therefore \cos \theta =\dfrac{{{P}^{2}}-1}{{{P}^{2}}+1} \\
\end{align}\]
Hence, we proved that is \[\csc \theta +\cot \theta =P\]then, \[\cos \theta =\dfrac{{{P}^{2}}-1}{{{P}^{2}}+1}\].
Hence proved.
Note: We got the expression, \[{{\left( 1+\cos \theta \right)}^{2}}={{\left( P\sin \theta \right)}^{2}}\].
Don’t use, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]and simplify \[{{\left( 1+\cos \theta \right)}^{2}}\]. This may complicate the answer obtained. So use the trigonometric identity of \[{{\sin }^{2}}\theta \]and simplify the expression obtained.
Complete step-by-step answer:
Given that, \[\csc \theta +\cot \theta =P-(1)\]
We know the basic trigonometric formulae where,
\[\csc =\dfrac{1}{\sin \theta }\]and \[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{\sin \theta }{\cos \theta }}=\dfrac{\cos \theta }{\sin \theta }\].
Now let us substitute the value of \[\csc \theta \]and \[\cot \theta \]in equation (1).
\[\begin{align}
& \csc \theta +\cot \theta =P \\
& \Rightarrow \dfrac{1}{\sin \theta }+\dfrac{\cos \theta }{\sin \theta }=P \\
& \dfrac{1+\cos \theta }{\sin \theta }=P \\
\end{align}\]
Thus we can write that, \[1+\cos \theta =P\sin \theta \].
Now let us square both sides of the expression, \[{{\left( 1+\cos \theta \right)}^{2}}={{\left( P\sin \theta \right)}^{2}}\].
We know that, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[\left( 1-{{\cos }^{2}}\theta \right)\]is of the form \[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\].
So, \[\left( 1-{{\cos }^{2}}\theta \right)\]can be written as, \[\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)\].
\[\begin{align}
& \therefore {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}{{\sin }^{2}}\theta \\
& {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}\left( 1-{{\cos }^{2}}\theta \right) \\
& \therefore {{\left( 1+\cos \theta \right)}^{2}}={{P}^{2}}\left( 1-\cos \theta \right)\left( 1+\cos \theta \right) \\
\end{align}\]
We can cancel out \[\left( 1+\cos \theta \right)\]from LHS and RHS of the equation.
Thus we get,
\[\begin{align}
& 1+\cos \theta ={{P}^{2}}\left( 1-\cos \theta \right) \\
& \Rightarrow 1+\cos \theta ={{P}^{2}}-{{P}^{2}}\cos \theta \\
\end{align}\]
Let us rearrange the above expression,
\[\begin{align}
& \cos \theta +{{P}^{2}}\cos \theta ={{P}^{2}}-1 \\
& \cos \theta \left( 1+{{P}^{2}} \right)={{P}^{2}}-1 \\
& \cos \theta \left( {{P}^{2}}+1 \right)={{P}^{2}}-1 \\
& \therefore \cos \theta =\dfrac{{{P}^{2}}-1}{{{P}^{2}}+1} \\
\end{align}\]
Hence, we proved that is \[\csc \theta +\cot \theta =P\]then, \[\cos \theta =\dfrac{{{P}^{2}}-1}{{{P}^{2}}+1}\].
Hence proved.
Note: We got the expression, \[{{\left( 1+\cos \theta \right)}^{2}}={{\left( P\sin \theta \right)}^{2}}\].
Don’t use, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]and simplify \[{{\left( 1+\cos \theta \right)}^{2}}\]. This may complicate the answer obtained. So use the trigonometric identity of \[{{\sin }^{2}}\theta \]and simplify the expression obtained.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

