
If $\cos x=-\dfrac{1}{3}$ , x lies in the third quadrant, find the values of $\sin \dfrac{x}{2},\text{ cos}\dfrac{x}{2}\text{ and }\tan \dfrac{x}{2}$ .
Answer
607.5k+ views
Hint: Start by finding the value of $\cos \dfrac{x}{2}$ using the formula that $\cos 2A=2{{\cos }^{2}}A-1$ . Now once you have got the value of $\cos \dfrac{x}{2}$, you can easily find other trigonometric ratios using the relation between the trigonometric ratios.
Complete step-by-step answer:
We will start with the solution to the above question by finding the value of $\cos \dfrac{x}{2}$ .
We know that $\cos 2A=2{{\cos }^{2}}A-1$ . So, if we use the formula for cosx, we get
$\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$
Now we will put the value of cosx from the question. On doing so, we get
$-\dfrac{1}{3}=2{{\cos }^{2}}\dfrac{x}{2}-1$
$\Rightarrow \dfrac{2}{3}=2{{\cos }^{2}}\dfrac{x}{2}$
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
\[\Rightarrow \cos \dfrac{x}{2}=\pm \sqrt{\dfrac{1}{3}}=\pm \dfrac{1}{\sqrt{3}}\]
It is given that x lies in the third quadrant. Then we can say that $\dfrac{x}{2}$ will for sure lie in the second quadrant and cosine is negative in the second quadrant.
$\therefore \cos \dfrac{x}{2}=-\dfrac{1}{\sqrt{3}}$
We know that ${{\sin }^{2}}\dfrac{x}{2}=1-{{\cos }^{2}}\dfrac{x}{2}.$ So, if we put the value of $\cos \dfrac{x}{2}$ in the formula, we get
${{\sin }^{2}}\dfrac{x}{2}=1-{{\left( -\dfrac{1}{\sqrt{3}} \right)}^{2}}$
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=1-\dfrac{1}{3}$
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=\dfrac{2}{3}$
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
$\Rightarrow \sin \dfrac{x}{2}=\pm \sqrt{\dfrac{2}{3}}$
Now, $\dfrac{x}{2}$ lies in the second quadrant and sine is positive in the second quadrant.
$\therefore \sin \dfrac{x}{2}=\dfrac{\sqrt{2}}{\sqrt{3}}$
Now using the property that $\tan \dfrac{x}{2}$ is the ratio of $\sin \dfrac{x}{2}$ to $\cos \dfrac{x}{2}$ , we get
$\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\dfrac{\dfrac{\sqrt{2}}{\sqrt{3}}}{-\dfrac{1}{\sqrt{3}}}=-\sqrt{2}$
Note: It is useful to remember the graph of the trigonometric ratios along with the signs of their values in different quadrants. For example: sine is always positive in the first and the second quadrant while negative in the other two. Also, you need to remember the properties related to complementary angles and trigonometric ratios. As you saw in the above solution, we had used the result that $\dfrac{x}{2}$ will for sure lie in the second quadrant. We arrived at this result as follows:
As we knew that $x$ lies in the second quadrant, we can say:
$\pi \le x\le \dfrac{3\pi }{2}$
Now if we divide each term in the inequality by 2, we get
$\dfrac{\pi }{2}\le \dfrac{x}{2}\le \dfrac{3\pi }{4}$
Using this result we can say that $\dfrac{x}{2}$ lies in the second quadrant.
Complete step-by-step answer:
We will start with the solution to the above question by finding the value of $\cos \dfrac{x}{2}$ .
We know that $\cos 2A=2{{\cos }^{2}}A-1$ . So, if we use the formula for cosx, we get
$\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$
Now we will put the value of cosx from the question. On doing so, we get
$-\dfrac{1}{3}=2{{\cos }^{2}}\dfrac{x}{2}-1$
$\Rightarrow \dfrac{2}{3}=2{{\cos }^{2}}\dfrac{x}{2}$
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
\[\Rightarrow \cos \dfrac{x}{2}=\pm \sqrt{\dfrac{1}{3}}=\pm \dfrac{1}{\sqrt{3}}\]
It is given that x lies in the third quadrant. Then we can say that $\dfrac{x}{2}$ will for sure lie in the second quadrant and cosine is negative in the second quadrant.
$\therefore \cos \dfrac{x}{2}=-\dfrac{1}{\sqrt{3}}$
We know that ${{\sin }^{2}}\dfrac{x}{2}=1-{{\cos }^{2}}\dfrac{x}{2}.$ So, if we put the value of $\cos \dfrac{x}{2}$ in the formula, we get
${{\sin }^{2}}\dfrac{x}{2}=1-{{\left( -\dfrac{1}{\sqrt{3}} \right)}^{2}}$
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=1-\dfrac{1}{3}$
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=\dfrac{2}{3}$
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
$\Rightarrow \sin \dfrac{x}{2}=\pm \sqrt{\dfrac{2}{3}}$
Now, $\dfrac{x}{2}$ lies in the second quadrant and sine is positive in the second quadrant.
$\therefore \sin \dfrac{x}{2}=\dfrac{\sqrt{2}}{\sqrt{3}}$
Now using the property that $\tan \dfrac{x}{2}$ is the ratio of $\sin \dfrac{x}{2}$ to $\cos \dfrac{x}{2}$ , we get
$\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\dfrac{\dfrac{\sqrt{2}}{\sqrt{3}}}{-\dfrac{1}{\sqrt{3}}}=-\sqrt{2}$
Note: It is useful to remember the graph of the trigonometric ratios along with the signs of their values in different quadrants. For example: sine is always positive in the first and the second quadrant while negative in the other two. Also, you need to remember the properties related to complementary angles and trigonometric ratios. As you saw in the above solution, we had used the result that $\dfrac{x}{2}$ will for sure lie in the second quadrant. We arrived at this result as follows:
As we knew that $x$ lies in the second quadrant, we can say:
$\pi \le x\le \dfrac{3\pi }{2}$
Now if we divide each term in the inequality by 2, we get
$\dfrac{\pi }{2}\le \dfrac{x}{2}\le \dfrac{3\pi }{4}$
Using this result we can say that $\dfrac{x}{2}$ lies in the second quadrant.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

