
If \[\cos \theta = \dfrac{2}{3}\] and $\theta $ is in the 4th quadrant, then $\dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }}$ is equal to
(A) $\dfrac{{ - 1}}{5}$
(B) $\dfrac{1}{5}$
(C) $ - 5$
(D) $5$
Answer
579.3k+ views
Hint:
First of all find the value of $\sin \theta $ by using the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and then find $\tan \theta $ by using, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to evaluate $\dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }}$.
Complete step by step solution:
Given, \[\cos \theta = \dfrac{2}{3}\] and $\theta $ is in the 4th quadrant.
To evaluate $\dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }}$; we will need to find the value of $\sin \theta $ and $\tan \theta $.
Now, find the value of $\sin \theta $by using the identity:
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta $
$ \Rightarrow \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
We have given that $\theta $ is in the 4th quadrant. Therefore, $\sin \theta $will be negative.
$\sin \theta = - \sqrt {1 - {{\cos }^2}\theta } $
$ \Rightarrow \sin \theta = - \sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} $
$ \Rightarrow \sin \theta = - \sqrt {1 - \dfrac{4}{9}} $
$ \Rightarrow \sin \theta = - \sqrt {\dfrac{{9 - 4}}{9}} $
$ \Rightarrow \sin \theta = \dfrac{{ - \sqrt 5 }}{3}$
Now, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \tan \theta = \dfrac{{\dfrac{{ - \sqrt 5 }}{3}}}{{\dfrac{2}{3}}}$
$ \Rightarrow \tan \theta = \dfrac{{ - \sqrt 5 }}{2}$
$\therefore \dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }} = \dfrac{{\dfrac{{ - \sqrt 5 }}{3} + \left( {\dfrac{{ - \sqrt 5 }}{2}} \right)}}{{\dfrac{{ - \sqrt 5 }}{3} - \left( {\dfrac{{ - \sqrt 5 }}{2}} \right)}}$
$ = \dfrac{{\dfrac{{ - \sqrt 5 }}{3} - \dfrac{{\sqrt 5 }}{2}}}{{\dfrac{{ - \sqrt 5 }}{3} + \dfrac{{\sqrt 5 }}{2}}}$
\[ = \dfrac{{\dfrac{{ - 2\sqrt 5 - 3\sqrt 5 }}{6}}}{{\dfrac{{ - 2\sqrt 5 + 3\sqrt 5 }}{6}}}\]
\[ = \dfrac{{ - 5\sqrt 5 }}{{\sqrt 5 }}\]
$ = - 5$
$\therefore \dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }} = - 5$
Hence, option (C) is the correct answer.
Note:
By ASTC formula, only $\cos \theta $ and $\sec \theta $ are positive in 4th quadrant while other trigonometry ratios $\left( {\sin \theta ,\tan \theta ,\cot \theta ,\cos ec\theta } \right)$are negative in 4th quadrant.
First of all find the value of $\sin \theta $ by using the identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and then find $\tan \theta $ by using, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to evaluate $\dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }}$.
Complete step by step solution:
Given, \[\cos \theta = \dfrac{2}{3}\] and $\theta $ is in the 4th quadrant.
To evaluate $\dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }}$; we will need to find the value of $\sin \theta $ and $\tan \theta $.
Now, find the value of $\sin \theta $by using the identity:
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta $
$ \Rightarrow \sin \theta = \pm \sqrt {1 - {{\cos }^2}\theta } $
We have given that $\theta $ is in the 4th quadrant. Therefore, $\sin \theta $will be negative.
$\sin \theta = - \sqrt {1 - {{\cos }^2}\theta } $
$ \Rightarrow \sin \theta = - \sqrt {1 - {{\left( {\dfrac{2}{3}} \right)}^2}} $
$ \Rightarrow \sin \theta = - \sqrt {1 - \dfrac{4}{9}} $
$ \Rightarrow \sin \theta = - \sqrt {\dfrac{{9 - 4}}{9}} $
$ \Rightarrow \sin \theta = \dfrac{{ - \sqrt 5 }}{3}$
Now, $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \tan \theta = \dfrac{{\dfrac{{ - \sqrt 5 }}{3}}}{{\dfrac{2}{3}}}$
$ \Rightarrow \tan \theta = \dfrac{{ - \sqrt 5 }}{2}$
$\therefore \dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }} = \dfrac{{\dfrac{{ - \sqrt 5 }}{3} + \left( {\dfrac{{ - \sqrt 5 }}{2}} \right)}}{{\dfrac{{ - \sqrt 5 }}{3} - \left( {\dfrac{{ - \sqrt 5 }}{2}} \right)}}$
$ = \dfrac{{\dfrac{{ - \sqrt 5 }}{3} - \dfrac{{\sqrt 5 }}{2}}}{{\dfrac{{ - \sqrt 5 }}{3} + \dfrac{{\sqrt 5 }}{2}}}$
\[ = \dfrac{{\dfrac{{ - 2\sqrt 5 - 3\sqrt 5 }}{6}}}{{\dfrac{{ - 2\sqrt 5 + 3\sqrt 5 }}{6}}}\]
\[ = \dfrac{{ - 5\sqrt 5 }}{{\sqrt 5 }}\]
$ = - 5$
$\therefore \dfrac{{\sin \theta + \tan \theta }}{{\sin \theta - \tan \theta }} = - 5$
Hence, option (C) is the correct answer.
Note:
By ASTC formula, only $\cos \theta $ and $\sec \theta $ are positive in 4th quadrant while other trigonometry ratios $\left( {\sin \theta ,\tan \theta ,\cot \theta ,\cos ec\theta } \right)$are negative in 4th quadrant.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

