
If \[\cos ec\theta = \dfrac{{p + q}}{{p - q}}\], then \[\cot \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right) = \]
A) \[\sqrt {\dfrac{q}{p}} \]
B) \[\sqrt {\dfrac{p}{q}} \]
C) \[pq\]
D) \[\sqrt {pq} \]
Answer
576.3k+ views
Hint: Here we will first use the following identity:-
\[\cos ec\theta = \dfrac{1}{{\sin \theta }}\] then we will use componendo dividendo and then finally use the following identities to get the desired answer.
\[
\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
Complete step-by-step answer:
The given equation is:-
\[\cos ec\theta = \dfrac{{p + q}}{{p - q}}\]
Now applying the following identity
\[\cos ec\theta = \dfrac{1}{{\sin \theta }}\]
We get:-
\[\dfrac{1}{{\sin \theta }} = \dfrac{{p + q}}{{p - q}}\]
Now applying componendo and dividendo we get:-
\[\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{p + q + p - q}}{{p + q - \left( {p - q} \right)}}\]
Solving it further we get:-
\[
\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{2p}}{{p + q - p + q}} \\
\Rightarrow \dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{2p}}{{2q}} \\
\Rightarrow \dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{p}{q} \\
\]
Now we know that:-
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
Hence substituting the value we get:-
\[\dfrac{{1 + 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{1 - 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}} = \dfrac{p}{q}\]……………………………….(1)
Now we know that:-
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Hence, \[{\sin ^2}\dfrac{\theta }{2} + {\cos ^2}\dfrac{\theta }{2} = 1\]
Hence substituting this value in equation1 we get:-
\[\dfrac{{{{\sin }^2}\dfrac{\theta }{2} + {{\cos }^2}\dfrac{\theta }{2} + 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{{{\sin }^2}\dfrac{\theta }{2} + {{\cos }^2}\dfrac{\theta }{2} - 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}} = \dfrac{p}{q}\]
Now using the following identities:-
\[
{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB \\
{\left( {A - B} \right)^2} = {A^2} + {B^2} - 2AB \\
\]
We get:-
\[\dfrac{{{{\left( {\sin \dfrac{\theta }{2} + \cos \dfrac{\theta }{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{\theta }{2} - \cos \dfrac{\theta }{2}} \right)}^2}}} = \dfrac{p}{q}\]
Solving it further we get:-
\[\dfrac{{{{\left( {\sin \dfrac{\theta }{2} + \cos \dfrac{\theta }{2}} \right)}^2}}}{{{{\left( {\cos \dfrac{\theta }{2} - \sin \dfrac{\theta }{2}} \right)}^2}}} = \dfrac{p}{q}\]
Now taking \[{\cos ^2}\dfrac{\theta }{2}\] common from numerator and denominator we get:-
\[{\left( {\dfrac{{\dfrac{{\cos \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} + \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}}}{{\dfrac{{\cos \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} - \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Hence, \[\tan \dfrac{\theta }{2} = \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\]
Therefore substituting the values we get:-
\[{\left( {\dfrac{{1 + \tan \dfrac{\theta }{2}}}{{1 - \tan \dfrac{\theta }{2}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that
\[\tan \dfrac{\pi }{4} = 1\]
Hence substituting the value we get:-
\[{\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\theta }{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{\theta }{2}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence applying this identity in above equation we get:-
\[{\left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)} \right]^2} = \dfrac{p}{q}\]
Now taking square root of both the sides we get:-
\[\sqrt {{{\left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)} \right]}^2}} = \sqrt {\dfrac{p}{q}} \]
Simplifying it further we get:-
\[\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right) = \sqrt {\dfrac{p}{q}} \]……………………….(2)
Now we know that
\[\cot \theta = \dfrac{1}{{\tan \theta }}\]
Hence we will take reciprocal of equation 2 and then apply this identity to get desired value:-
\[\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)}} = \sqrt {\dfrac{q}{p}} \]
Now applying the identity we get:-
\[\cot \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right) = \sqrt {\dfrac{q}{p}} \]
Therefore option B is the correct option.
Note: Students might make mistake in making the squares of the quantities using the identities:
\[
{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB \\
{\left( {A - B} \right)^2} = {A^2} + {B^2} - 2AB \\
\]
In such questions we need to use the given information and then then transform it into required form to get the desired answer.
\[\cos ec\theta = \dfrac{1}{{\sin \theta }}\] then we will use componendo dividendo and then finally use the following identities to get the desired answer.
\[
\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} \\
\cot \theta = \dfrac{1}{{\tan \theta }} \\
\]
Complete step-by-step answer:
The given equation is:-
\[\cos ec\theta = \dfrac{{p + q}}{{p - q}}\]
Now applying the following identity
\[\cos ec\theta = \dfrac{1}{{\sin \theta }}\]
We get:-
\[\dfrac{1}{{\sin \theta }} = \dfrac{{p + q}}{{p - q}}\]
Now applying componendo and dividendo we get:-
\[\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{p + q + p - q}}{{p + q - \left( {p - q} \right)}}\]
Solving it further we get:-
\[
\dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{2p}}{{p + q - p + q}} \\
\Rightarrow \dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{{2p}}{{2q}} \\
\Rightarrow \dfrac{{1 + \sin \theta }}{{1 - \sin \theta }} = \dfrac{p}{q} \\
\]
Now we know that:-
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
Hence substituting the value we get:-
\[\dfrac{{1 + 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{1 - 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}} = \dfrac{p}{q}\]……………………………….(1)
Now we know that:-
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Hence, \[{\sin ^2}\dfrac{\theta }{2} + {\cos ^2}\dfrac{\theta }{2} = 1\]
Hence substituting this value in equation1 we get:-
\[\dfrac{{{{\sin }^2}\dfrac{\theta }{2} + {{\cos }^2}\dfrac{\theta }{2} + 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{{{\sin }^2}\dfrac{\theta }{2} + {{\cos }^2}\dfrac{\theta }{2} - 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}} = \dfrac{p}{q}\]
Now using the following identities:-
\[
{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB \\
{\left( {A - B} \right)^2} = {A^2} + {B^2} - 2AB \\
\]
We get:-
\[\dfrac{{{{\left( {\sin \dfrac{\theta }{2} + \cos \dfrac{\theta }{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{\theta }{2} - \cos \dfrac{\theta }{2}} \right)}^2}}} = \dfrac{p}{q}\]
Solving it further we get:-
\[\dfrac{{{{\left( {\sin \dfrac{\theta }{2} + \cos \dfrac{\theta }{2}} \right)}^2}}}{{{{\left( {\cos \dfrac{\theta }{2} - \sin \dfrac{\theta }{2}} \right)}^2}}} = \dfrac{p}{q}\]
Now taking \[{\cos ^2}\dfrac{\theta }{2}\] common from numerator and denominator we get:-
\[{\left( {\dfrac{{\dfrac{{\cos \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} + \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}}}{{\dfrac{{\cos \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} - \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Hence, \[\tan \dfrac{\theta }{2} = \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\]
Therefore substituting the values we get:-
\[{\left( {\dfrac{{1 + \tan \dfrac{\theta }{2}}}{{1 - \tan \dfrac{\theta }{2}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that
\[\tan \dfrac{\pi }{4} = 1\]
Hence substituting the value we get:-
\[{\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\theta }{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{\theta }{2}}}} \right)^2} = \dfrac{p}{q}\]
Now we know that
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence applying this identity in above equation we get:-
\[{\left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)} \right]^2} = \dfrac{p}{q}\]
Now taking square root of both the sides we get:-
\[\sqrt {{{\left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)} \right]}^2}} = \sqrt {\dfrac{p}{q}} \]
Simplifying it further we get:-
\[\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right) = \sqrt {\dfrac{p}{q}} \]……………………….(2)
Now we know that
\[\cot \theta = \dfrac{1}{{\tan \theta }}\]
Hence we will take reciprocal of equation 2 and then apply this identity to get desired value:-
\[\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right)}} = \sqrt {\dfrac{q}{p}} \]
Now applying the identity we get:-
\[\cot \left( {\dfrac{\pi }{4} + \dfrac{\theta }{2}} \right) = \sqrt {\dfrac{q}{p}} \]
Therefore option B is the correct option.
Note: Students might make mistake in making the squares of the quantities using the identities:
\[
{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB \\
{\left( {A - B} \right)^2} = {A^2} + {B^2} - 2AB \\
\]
In such questions we need to use the given information and then then transform it into required form to get the desired answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

