
If $\cos \alpha +\cos \beta =a$, $\sin \alpha +\sin \beta =b$ and $\alpha -\beta =2\theta $ then $\dfrac{\cos 3\theta }{\cos \theta }=?$
Answer
522.6k+ views
Hint: We find the square values of the equations $\cos \alpha +\cos \beta =a$, $\sin \alpha +\sin \beta =b$. We add them to find the value of $2\cos 2\theta $. We simplify the equation $\dfrac{\cos 3\theta }{\cos \theta }$ to form it with $2\cos 2\theta $ and then place the value to get the final solution.
Complete step by step solution:
We assume $\cos \alpha +\cos \beta =a..........(i)$, $\sin \alpha +\sin \beta =b..........(ii)$.
We take squares of both equations and get
$\begin{align}
& {{\left( \cos \alpha +\cos \beta \right)}^{2}}={{a}^{2}} \\
& \Rightarrow {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta ={{a}^{2}} \\
\end{align}$
$\begin{align}
& {{\left( \sin \alpha +\sin \beta \right)}^{2}}={{b}^{2}} \\
& \Rightarrow {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{b}^{2}} \\
\end{align}$
Now we add these two equations of squares to get
$\begin{align}
& {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
We have the associative theorem of $\cos \alpha \cos \beta +\sin \alpha \sin \beta =\cos \left( \alpha -\beta \right)$.
We put the values and get $2+2\cos \left( \alpha -\beta \right)={{a}^{2}}+{{b}^{2}}$.
We also have that $\alpha -\beta =2\theta $ which gives
$\begin{align}
& 2+2\cos \left( \alpha -\beta \right)={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2+2\cos 2\theta ={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2\cos 2\theta ={{a}^{2}}+{{b}^{2}}-2 \\
\end{align}$
We simplify the equation $\dfrac{\cos 3\theta }{\cos \theta }$ using the multiple angle formula of $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
So, $\dfrac{\cos 3\theta }{\cos \theta }=\dfrac{4{{\cos }^{3}}\theta -3\cos \theta }{\cos \theta }=4{{\cos }^{2}}\theta -3$.
We also have $2{{\cos }^{2}}\theta =1+\cos 2\theta $.
Changing the equation, we get $\dfrac{\cos 3\theta }{\cos \theta }=4{{\cos }^{2}}\theta -3=2\left( 1+\cos 2\theta \right)-3=2\cos 2\theta -1$.
We now replace the value of $2\cos 2\theta ={{a}^{2}}+{{b}^{2}}-2$ in the equation of $\dfrac{\cos 3\theta }{\cos \theta }=2\cos 2\theta -1$.
So, $\dfrac{\cos 3\theta }{\cos \theta }=2\cos 2\theta -1={{a}^{2}}+{{b}^{2}}-2-1={{a}^{2}}+{{b}^{2}}-3$.
Therefore, the value of $\dfrac{\cos 3\theta }{\cos \theta }$ is ${{a}^{2}}+{{b}^{2}}-3$.
Note:
We need to remember that we can also divide with $\cos \theta $ assuming that $\cos \theta \ne 0$. We also need to remember that we used the identity formula of ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ to find the simplified form.
Complete step by step solution:
We assume $\cos \alpha +\cos \beta =a..........(i)$, $\sin \alpha +\sin \beta =b..........(ii)$.
We take squares of both equations and get
$\begin{align}
& {{\left( \cos \alpha +\cos \beta \right)}^{2}}={{a}^{2}} \\
& \Rightarrow {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta ={{a}^{2}} \\
\end{align}$
$\begin{align}
& {{\left( \sin \alpha +\sin \beta \right)}^{2}}={{b}^{2}} \\
& \Rightarrow {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{b}^{2}} \\
\end{align}$
Now we add these two equations of squares to get
$\begin{align}
& {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +2\cos \alpha \cos \beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +2\sin \alpha \sin \beta ={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2+2\left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)={{a}^{2}}+{{b}^{2}} \\
\end{align}$
We have the associative theorem of $\cos \alpha \cos \beta +\sin \alpha \sin \beta =\cos \left( \alpha -\beta \right)$.
We put the values and get $2+2\cos \left( \alpha -\beta \right)={{a}^{2}}+{{b}^{2}}$.
We also have that $\alpha -\beta =2\theta $ which gives
$\begin{align}
& 2+2\cos \left( \alpha -\beta \right)={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2+2\cos 2\theta ={{a}^{2}}+{{b}^{2}} \\
& \Rightarrow 2\cos 2\theta ={{a}^{2}}+{{b}^{2}}-2 \\
\end{align}$
We simplify the equation $\dfrac{\cos 3\theta }{\cos \theta }$ using the multiple angle formula of $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $.
So, $\dfrac{\cos 3\theta }{\cos \theta }=\dfrac{4{{\cos }^{3}}\theta -3\cos \theta }{\cos \theta }=4{{\cos }^{2}}\theta -3$.
We also have $2{{\cos }^{2}}\theta =1+\cos 2\theta $.
Changing the equation, we get $\dfrac{\cos 3\theta }{\cos \theta }=4{{\cos }^{2}}\theta -3=2\left( 1+\cos 2\theta \right)-3=2\cos 2\theta -1$.
We now replace the value of $2\cos 2\theta ={{a}^{2}}+{{b}^{2}}-2$ in the equation of $\dfrac{\cos 3\theta }{\cos \theta }=2\cos 2\theta -1$.
So, $\dfrac{\cos 3\theta }{\cos \theta }=2\cos 2\theta -1={{a}^{2}}+{{b}^{2}}-2-1={{a}^{2}}+{{b}^{2}}-3$.
Therefore, the value of $\dfrac{\cos 3\theta }{\cos \theta }$ is ${{a}^{2}}+{{b}^{2}}-3$.
Note:
We need to remember that we can also divide with $\cos \theta $ assuming that $\cos \theta \ne 0$. We also need to remember that we used the identity formula of ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ to find the simplified form.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

