
If ${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $ then the value of xy +yz +zx is equal to:
A. 0
B. 1
C. 3
D. -3
Answer
602.4k+ views
Hint: In the above expression ${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $which will be possible only when $cos^-1x$ = π, $cos^-1y$ = π and $cos^-1z$ = π. If $cos^-1x$ = π then x is equal to -1. Similarly y and z is also equal to -1 and substitute these x, y and z values in xy +yz +zx.
Complete step by step answer:
The range of ${{\cos }^{-1}}x$is from 0 to π or$0\le {{\cos }^{-1}}x\le \pi $.
The expression given in question is:
${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $
As we have shown above that the range of ${{\cos }^{-1}}x$is from 0 to π or $0\le {{\cos }^{-1}}x\le \pi $ so the minimum value of ${{\cos }^{-1}}x$ is 0 and maximum value of ${{\cos }^{-1}}x$ is π. So, in the above given equation is possible when individually${{\cos }^{-1}}x,{{\cos }^{-1}}y,{{\cos }^{-1}}z$ is equal to π.
From the inverse trigonometric functions, we know that, ${{\cos }^{-1}}x=\pi $ then x = -1. Similarly, y and z are also equal to -1.
So, the values of x = y = z = -1.
Substituting the values of x, y and z in the expression xy +yz +zx we get,
$\begin{align}
& \left( -1 \right)\left( -1 \right)+\left( -1 \right)\left( -1 \right)+\left( -1 \right)\left( -1 \right) \\
& =-3 \\
\end{align}$
Hence, the value of the expression xy +yz +zx is 3.
Hence, the correct option is (c).
Note: You might think of doing the above problem as:
${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $
Subtracting ${{\cos }^{-1}}z$ both the sides and then taking cosine both the sides we get,
$\cos \left( {{\cos }^{-1}}x+{{\cos }^{-1}}y \right)=\cos \left( 3\pi -{{\cos }^{-1}}z \right)$
Using identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ in the above equation we get,
$\begin{align}
& \cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}y \right)-\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}y \right)=-z \\
& \Rightarrow xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}=-z \\
& \Rightarrow xy+z=\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \\
& \\
\end{align}$
Squaring both the sides we get,
$\begin{align}
& {{\left( xy+z \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+2xyz+{{z}^{2}}=1-\left( {{x}^{2}}+{{y}^{2}} \right)+{{x}^{2}}{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\
\end{align}$
Now, resolving the above expression in terms of xy + yz + zx is pretty difficult. But the question could also ask you to evaluate the given expression ${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $ and write it in the form of${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1$.
Complete step by step answer:
The range of ${{\cos }^{-1}}x$is from 0 to π or$0\le {{\cos }^{-1}}x\le \pi $.
The expression given in question is:
${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $
As we have shown above that the range of ${{\cos }^{-1}}x$is from 0 to π or $0\le {{\cos }^{-1}}x\le \pi $ so the minimum value of ${{\cos }^{-1}}x$ is 0 and maximum value of ${{\cos }^{-1}}x$ is π. So, in the above given equation is possible when individually${{\cos }^{-1}}x,{{\cos }^{-1}}y,{{\cos }^{-1}}z$ is equal to π.
From the inverse trigonometric functions, we know that, ${{\cos }^{-1}}x=\pi $ then x = -1. Similarly, y and z are also equal to -1.
So, the values of x = y = z = -1.
Substituting the values of x, y and z in the expression xy +yz +zx we get,
$\begin{align}
& \left( -1 \right)\left( -1 \right)+\left( -1 \right)\left( -1 \right)+\left( -1 \right)\left( -1 \right) \\
& =-3 \\
\end{align}$
Hence, the value of the expression xy +yz +zx is 3.
Hence, the correct option is (c).
Note: You might think of doing the above problem as:
${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $
Subtracting ${{\cos }^{-1}}z$ both the sides and then taking cosine both the sides we get,
$\cos \left( {{\cos }^{-1}}x+{{\cos }^{-1}}y \right)=\cos \left( 3\pi -{{\cos }^{-1}}z \right)$
Using identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ in the above equation we get,
$\begin{align}
& \cos \left( {{\cos }^{-1}}x \right)\cos \left( {{\cos }^{-1}}y \right)-\sin \left( {{\cos }^{-1}}x \right)\sin \left( {{\cos }^{-1}}y \right)=-z \\
& \Rightarrow xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}=-z \\
& \Rightarrow xy+z=\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \\
& \\
\end{align}$
Squaring both the sides we get,
$\begin{align}
& {{\left( xy+z \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+2xyz+{{z}^{2}}=1-\left( {{x}^{2}}+{{y}^{2}} \right)+{{x}^{2}}{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\
\end{align}$
Now, resolving the above expression in terms of xy + yz + zx is pretty difficult. But the question could also ask you to evaluate the given expression ${{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi $ and write it in the form of${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

