
If c is small in comparison with I, then $ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}}= $ .
\[\begin{align}
& A.2+\dfrac{3c}{4I} \\
& B.2+\dfrac{3{{c}^{2}}}{4{{I}^{2}}} \\
& C.1+\dfrac{3{{c}^{2}}}{4{{I}^{2}}} \\
& D.1+\dfrac{3c}{4I} \\
\end{align}\]
Answer
568.2k+ views
Hint: In this question, we need to simplify the expression $ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}} $ where c is small in comparison with I. For this, we will first use the properties of exponents which are \[{{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}}\text{ and }\dfrac{1}{a}={{a}^{-1}}\]. Then we will apply the binomial expansion to evaluate our answer. Binomial expansion for $ {{\left( 1+x \right)}^{n}} $ is given by $ {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+\cdots \cdots $ .
Complete step by step answer:
Here we are given the expression as $ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}} $ . We need to simplify this expression.
Let us first take I common from the denominator of both terms, we get $ {{\left( \dfrac{I}{I\left( 1+\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I\left( 1-\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}} $ .
Cancelling I in the numerator and the denominator of both terms we get $ {{\left( \dfrac{I}{\left( 1+\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{\left( 1-\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}} $ .
Now using the law of exponents \[{{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}}\] we get $ \dfrac{{{\left( I \right)}^{\dfrac{1}{2}}}}{{{\left( 1+\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}}+\dfrac{{{\left( I \right)}^{\dfrac{1}{2}}}}{{{\left( 1-\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}} $ .
As we know $ {{\left( I \right)}^{\dfrac{1}{2}}}=1 $ so we get $ \dfrac{1}{{{\left( 1+\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}}+\dfrac{1}{{{\left( 1-\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}} $ .
We know from the law of exponents that \[\dfrac{1}{a}={{a}^{-1}}\] using this we get $ {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}\cdots \cdots \cdots \left( 1 \right) $ .
Now let us use the binomial expansion to simplify our answer. Binomial expansion for $ {{\left( 1+x \right)}^{n}} $ is given by $ {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+\cdots \cdots $ .
For first term $ {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}} $ we have $ n=\dfrac{-1}{2}\text{ and }x=\dfrac{c}{I} $ so we get,
\[{{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\left( -\dfrac{1}{2} \right)\left( \dfrac{c}{I} \right)+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)}{2!}{{\left( \dfrac{c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)\left( -\dfrac{1}{2}-2 \right)}{3!}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \]
Simplifying we get,
\[\begin{align}
& {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{3}{2} \right)}{2}{{\left( \dfrac{c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{6}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \\
& \Rightarrow {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}-\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \cdots \cdots \cdots \left( 2 \right) \\
\end{align}\]
For second term $ {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}} $ we have $ n=\dfrac{-1}{2}\text{ and }x=\dfrac{-c}{I} $ so we get,
\[{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\left( -\dfrac{1}{2} \right)\left( \dfrac{-c}{I} \right)+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)}{2!}{{\left( \dfrac{-c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)\left( -\dfrac{1}{2}-2 \right)}{3!}{{\left( \dfrac{-c}{I} \right)}^{3}}+\cdots \cdots \]
Simplifying we get,
\[\begin{align}
& {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{c}{2I}+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)}{2}{{\left( \dfrac{c}{I} \right)}^{2}}-\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{6}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \\
& \Rightarrow {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \cdots \cdots \cdots \left( 3 \right) \\
\end{align}\]
Putting the values from (2) and (3) in (1) we get,
\[{{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}-\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots 1+\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \]
Cancelling the terms with opposite signs we get,
\[\begin{align}
& {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+1+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
& \Rightarrow 2+\dfrac{2\times 3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
& \Rightarrow 2+\dfrac{3}{4}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
\end{align}\]
Now as we are given that c is small in comparison with I, so $ \dfrac{c}{I} $ will be small term and $ \dfrac{{{c}^{3}}}{{{I}^{3}}},\dfrac{{{c}^{4}}}{{{I}^{3}}} $ will become very small such that they can be neglected. So ignoring higher powers of $ \dfrac{c}{I} $ we have our answer as,
$ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}}=2+\dfrac{3}{4}\dfrac{{{c}^{2}}}{{{I}^{2}}} $ .
Hence option B is the correct answer.
Note:
Students should take care of the signs while solving the sum. Students can make mistakes in signs while applying binomial expansion. Students should note that $ \dfrac{a}{b} $ is less than 1 if a is smaller than b, so rising power of numbers less than 1 decreases them more and more.
Complete step by step answer:
Here we are given the expression as $ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}} $ . We need to simplify this expression.
Let us first take I common from the denominator of both terms, we get $ {{\left( \dfrac{I}{I\left( 1+\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I\left( 1-\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}} $ .
Cancelling I in the numerator and the denominator of both terms we get $ {{\left( \dfrac{I}{\left( 1+\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{\left( 1-\dfrac{c}{I} \right)} \right)}^{\dfrac{1}{2}}} $ .
Now using the law of exponents \[{{\left( \dfrac{a}{b} \right)}^{m}}=\dfrac{{{a}^{m}}}{{{b}^{m}}}\] we get $ \dfrac{{{\left( I \right)}^{\dfrac{1}{2}}}}{{{\left( 1+\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}}+\dfrac{{{\left( I \right)}^{\dfrac{1}{2}}}}{{{\left( 1-\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}} $ .
As we know $ {{\left( I \right)}^{\dfrac{1}{2}}}=1 $ so we get $ \dfrac{1}{{{\left( 1+\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}}+\dfrac{1}{{{\left( 1-\dfrac{c}{I} \right)}^{\dfrac{1}{2}}}} $ .
We know from the law of exponents that \[\dfrac{1}{a}={{a}^{-1}}\] using this we get $ {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}\cdots \cdots \cdots \left( 1 \right) $ .
Now let us use the binomial expansion to simplify our answer. Binomial expansion for $ {{\left( 1+x \right)}^{n}} $ is given by $ {{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+\cdots \cdots $ .
For first term $ {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}} $ we have $ n=\dfrac{-1}{2}\text{ and }x=\dfrac{c}{I} $ so we get,
\[{{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\left( -\dfrac{1}{2} \right)\left( \dfrac{c}{I} \right)+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)}{2!}{{\left( \dfrac{c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)\left( -\dfrac{1}{2}-2 \right)}{3!}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \]
Simplifying we get,
\[\begin{align}
& {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{3}{2} \right)}{2}{{\left( \dfrac{c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{6}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \\
& \Rightarrow {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}-\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \cdots \cdots \cdots \left( 2 \right) \\
\end{align}\]
For second term $ {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}} $ we have $ n=\dfrac{-1}{2}\text{ and }x=\dfrac{-c}{I} $ so we get,
\[{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\left( -\dfrac{1}{2} \right)\left( \dfrac{-c}{I} \right)+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)}{2!}{{\left( \dfrac{-c}{I} \right)}^{2}}+\dfrac{-\dfrac{1}{2}\left( -\dfrac{1}{2}-1 \right)\left( -\dfrac{1}{2}-2 \right)}{3!}{{\left( \dfrac{-c}{I} \right)}^{3}}+\cdots \cdots \]
Simplifying we get,
\[\begin{align}
& {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{c}{2I}+\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)}{2}{{\left( \dfrac{c}{I} \right)}^{2}}-\dfrac{\left( -\dfrac{1}{2} \right)\left( -\dfrac{3}{2} \right)\left( -\dfrac{5}{2} \right)}{6}{{\left( \dfrac{c}{I} \right)}^{3}}+\cdots \cdots \\
& \Rightarrow {{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \cdots \cdots \cdots \left( 3 \right) \\
\end{align}\]
Putting the values from (2) and (3) in (1) we get,
\[{{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1-\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}-\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots 1+\dfrac{c}{2I}+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\dfrac{15}{48}\dfrac{{{c}^{3}}}{{{I}^{3}}}+\cdots \]
Cancelling the terms with opposite signs we get,
\[\begin{align}
& {{\left( 1+\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}+{{\left( 1-\dfrac{c}{I} \right)}^{-\dfrac{1}{2}}}=1+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+1+\dfrac{3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
& \Rightarrow 2+\dfrac{2\times 3}{8}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
& \Rightarrow 2+\dfrac{3}{4}\dfrac{{{c}^{2}}}{{{I}^{2}}}+\cdots \\
\end{align}\]
Now as we are given that c is small in comparison with I, so $ \dfrac{c}{I} $ will be small term and $ \dfrac{{{c}^{3}}}{{{I}^{3}}},\dfrac{{{c}^{4}}}{{{I}^{3}}} $ will become very small such that they can be neglected. So ignoring higher powers of $ \dfrac{c}{I} $ we have our answer as,
$ {{\left( \dfrac{I}{I+c} \right)}^{\dfrac{1}{2}}}+{{\left( \dfrac{I}{I-c} \right)}^{\dfrac{1}{2}}}=2+\dfrac{3}{4}\dfrac{{{c}^{2}}}{{{I}^{2}}} $ .
Hence option B is the correct answer.
Note:
Students should take care of the signs while solving the sum. Students can make mistakes in signs while applying binomial expansion. Students should note that $ \dfrac{a}{b} $ is less than 1 if a is smaller than b, so rising power of numbers less than 1 decreases them more and more.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

