
If \[c > 0\]and \[4a + c < 2b\], then \[a{x^2} - bx + c = 0\]has a root in the interval
A. \[\left( {0,2} \right)\]
B. \[\left( {2,4} \right)\]
C. \[\left( { - 2,0} \right)\]
D. \[\left( {4,9} \right)\]
Answer
510.3k+ views
Hint: First we draw the graph of quadratic equation satisfying the above condition and also observe the value of x for which the above condition is valid. Hence, if in the stated interval the graph is cutting x-axis then it will be its root lying in that interval. And hence we can predict our answer from there.
Complete step by step answer:
As the given conditions are \[c > 0\] and \[4a + c < 2b\] and the quadratic equation is \[a{x^2} - bx + c = 0\]
Let \[f(x) = a{x^2} - bx + c = 0\],
On substituting \[x = 0\], we get,
\[f(0) = c\], and as \[c > 0\], so we have \[f\left( 0 \right) > 0\]
On substituting \[x = 2\] , we get
\[f(2) = 4a - 2b + c\], and as we have \[4a + c < 2b\]
So we get, \[f(2) < - 2b + 2b\], i.e., \[f\left( 2 \right) < 0\]
So, it is clear that \[f\left( 0 \right) > 0\]while on substituting the value of \[x = 2\]we can state that \[f\left( 2 \right) < 0\].
And hence, making the graph as
We can see that the graph change its sign in the given term and hence it’s one root lies between \[\left( {0,2} \right)\].
Hence, option (A) is correct answer.
Note: Roots are also called x-intercepts or zeros. The roots of a function are the x-intercepts. By definition, the y-coordinate of points lying on the x-axis is zero. Therefore, to find the roots of a quadratic function, we set \[f\left( x \right) = 0\]. Hence, draw the graph and examine the question stated above properly. Always remember that if for an interval, if on substituting the value of extreme ends, the nature of function changes, then root must lie between that interval, else if the nature of the function is the same then we should not conclude that no root lies between them, instead we should take smaller interval and recheck for it.
Complete step by step answer:
As the given conditions are \[c > 0\] and \[4a + c < 2b\] and the quadratic equation is \[a{x^2} - bx + c = 0\]
Let \[f(x) = a{x^2} - bx + c = 0\],
On substituting \[x = 0\], we get,
\[f(0) = c\], and as \[c > 0\], so we have \[f\left( 0 \right) > 0\]
On substituting \[x = 2\] , we get
\[f(2) = 4a - 2b + c\], and as we have \[4a + c < 2b\]
So we get, \[f(2) < - 2b + 2b\], i.e., \[f\left( 2 \right) < 0\]
So, it is clear that \[f\left( 0 \right) > 0\]while on substituting the value of \[x = 2\]we can state that \[f\left( 2 \right) < 0\].
And hence, making the graph as

We can see that the graph change its sign in the given term and hence it’s one root lies between \[\left( {0,2} \right)\].
Hence, option (A) is correct answer.
Note: Roots are also called x-intercepts or zeros. The roots of a function are the x-intercepts. By definition, the y-coordinate of points lying on the x-axis is zero. Therefore, to find the roots of a quadratic function, we set \[f\left( x \right) = 0\]. Hence, draw the graph and examine the question stated above properly. Always remember that if for an interval, if on substituting the value of extreme ends, the nature of function changes, then root must lie between that interval, else if the nature of the function is the same then we should not conclude that no root lies between them, instead we should take smaller interval and recheck for it.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
