
If ball of steel (density $ \text{ }\rho\text{ }=7\cdot 8\text{ c}{{\text{m}}^{-3}} $ ) attains a terminal velocity of $ 10\text{ cm}{{\text{s}}^{-1}} $ when falling in a tank of water (coefficient of viscosity q water $ =8\cdot 5\times {{10}^{-6}}\text{ P} $ a.s) then its terminal velocity in glycerin $ \left( \text{ }\rho\text{ }=1\cdot 2\text{ gc}{{\text{m}}^{-3}}\text{q}=13\cdot 2\text{ P a}\text{.s} \right) $ would be nearly:
(A) $ 1\cdot 5\times {{10}^{-3}}\text{ cm}{{\text{s}}^{-1}} $
(B) $ 1\cdot 6\times {{10}^{-5}}\text{cm}{{\text{s}}^{-1}} $
(C) $ 6\cdot 25\times {{10}^{-4}}\text{ cm}{{\text{s}}^{-1}} $
(D) $ 6\cdot 45\times {{10}^{-4}}\text{ cm}{{\text{s}}^{-1}} $
Answer
563.7k+ views
Hint: Terminal velocity is a steady speed achieved by an object freely falling through a gas or liquid. An object dropped from rest will increase its speed until it reaches terminal velocity; an object forced to move faster than its terminal velocity will, upon release, slow down to this constant velocity. The terminal velocity of a sphere of radius ‘r’ and density ‘ $ \text{ }\rho\text{ } $ ’ immersed in a liquid of density $ \text{ }\rho\text{ } $ and viscosity $ \text{ }\eta\text{ } $ is given by
$\Rightarrow \text{V}=\left( {{\text{ }\rho\text{ }}_{\text{b}}}-{{\text{ }\rho\text{ }}_{1}} \right)\text{ g}=\text{6 }\pi\text{ }\eta\text{ rv} $
Complete step by step solution
Terminal velocity of ball when falling in liquid is given by
$\Rightarrow \left( {{\text{ }\rho\text{ }}_{\text{b}}}-{{\text{ }\rho\text{ }}_{1}} \right)\text{ Vg}=\text{6 }\pi\text{ }\eta\text{ rv} $
Case 1:
When a ball falls in a tank of water of density $ {{\text{ }\rho\text{ }}_{\text{water}}}=1\text{ g c}{{\text{m}}^{-3}} $
$ \begin{align}
&\Rightarrow {{\text{ }\rho\text{ }}_{\text{ball}}}=7\cdot 8\text{ g c}{{\text{m}}^{-3}} \\
&\Rightarrow {{\text{ }\eta\text{ }}_{\text{water}}}=8\cdot 5\times {{10}^{-4}}\text{ }\rho\text{ } \\
\end{align} $
And terminal velocity $ \text{V}=10\text{cm }{{\text{s}}^{-1}} $
Put all the above value in equation (1)
$\Rightarrow\left( 7\cdot 8-1 \right)\text{Vg}=6\text{ }\pi\text{ }\times \text{8}\cdot \text{5}\times \text{1}{{\text{0}}^{-4}}\text{r}\times \text{10} $ …. (2)
Case 2:
When ball falling in tank of glycerin
$ \begin{align}
&\Rightarrow {{\text{ }\rho\text{ }}_{\text{ball}}}=7\cdot 8\text{g c}{{\text{m}}^{-3}} \\
&\Rightarrow {{\text{ }\eta\text{ }}_{\text{glycerin}}}=13\cdot 2\text{ }\rho\text{ } \\
\end{align} $
And terminal velocity $ {{\text{V}}_{1}} $
Put all the value in equation (1)
$\Rightarrow \left( 7\cdot 8-1\cdot 2 \right)\text{Vg}=6\text{ }\pi\text{ }\times \text{13}\cdot \text{2r}\times {{\text{v}}_{1}} $ … (3)
Now divide (3) by equation (2)
$ \begin{align}
&\Rightarrow \dfrac{\left( 7\cdot 8-1\cdot 2 \right)\text{Vg}}{\left( 7\cdot 8-1 \right)\text{Vg}}=\dfrac{13\cdot 2\text{r}\times 6\text{ }\pi\text{ }\times {{\text{V}}_{1}}}{8\cdot 5\times {{10}^{-4}}\text{r}\times 6\text{ }\pi\text{ }\times 10} \\
&\Rightarrow \dfrac{7\cdot 8-1\cdot 2}{7\cdot 8-1}=\dfrac{13\cdot 2\text{r}\times {{\text{V}}_{1}}}{8\cdot 5\times {{10}^{-4}}\text{r}\times 10} \\
&\Rightarrow \dfrac{6\cdot 6}{6\cdot 8}\times \dfrac{8\cdot 5\times {{10}^{-3}}}{13\cdot 2}={{\text{V}}_{1}} \\
&\Rightarrow \dfrac{56\cdot \times {{10}^{-3}}}{89\cdot 76}={{\text{V}}_{1}} \\
\end{align} $
$ \begin{align}
&\Rightarrow {{\text{V}}_{1}}=0\cdot 625\times {{10}^{-3}} \\
&\Rightarrow \text{ }=6\cdot 25\times {{10}^{-4}}\text{cm }{{\text{s}}^{-1}} \\
\end{align} $
Terminal velocity of ball in glycerin is $ 6\cdot 25\times {{10}^{-4}}\text{cm }{{\text{s}}^{-1}} $
Hence, option C is correct.
Note
The concept of terminal velocity is important in our daily life. This is the maximum velocity attainable by an object as it falls through a fluid. From terminal velocity we can find viscosity and density of liquid. We cannot fall faster than terminal velocity because the maximum speed we obtain when falling is called terminal velocity.
$\Rightarrow \text{V}=\left( {{\text{ }\rho\text{ }}_{\text{b}}}-{{\text{ }\rho\text{ }}_{1}} \right)\text{ g}=\text{6 }\pi\text{ }\eta\text{ rv} $
Complete step by step solution
Terminal velocity of ball when falling in liquid is given by
$\Rightarrow \left( {{\text{ }\rho\text{ }}_{\text{b}}}-{{\text{ }\rho\text{ }}_{1}} \right)\text{ Vg}=\text{6 }\pi\text{ }\eta\text{ rv} $
Case 1:
When a ball falls in a tank of water of density $ {{\text{ }\rho\text{ }}_{\text{water}}}=1\text{ g c}{{\text{m}}^{-3}} $
$ \begin{align}
&\Rightarrow {{\text{ }\rho\text{ }}_{\text{ball}}}=7\cdot 8\text{ g c}{{\text{m}}^{-3}} \\
&\Rightarrow {{\text{ }\eta\text{ }}_{\text{water}}}=8\cdot 5\times {{10}^{-4}}\text{ }\rho\text{ } \\
\end{align} $
And terminal velocity $ \text{V}=10\text{cm }{{\text{s}}^{-1}} $
Put all the above value in equation (1)
$\Rightarrow\left( 7\cdot 8-1 \right)\text{Vg}=6\text{ }\pi\text{ }\times \text{8}\cdot \text{5}\times \text{1}{{\text{0}}^{-4}}\text{r}\times \text{10} $ …. (2)
Case 2:
When ball falling in tank of glycerin
$ \begin{align}
&\Rightarrow {{\text{ }\rho\text{ }}_{\text{ball}}}=7\cdot 8\text{g c}{{\text{m}}^{-3}} \\
&\Rightarrow {{\text{ }\eta\text{ }}_{\text{glycerin}}}=13\cdot 2\text{ }\rho\text{ } \\
\end{align} $
And terminal velocity $ {{\text{V}}_{1}} $
Put all the value in equation (1)
$\Rightarrow \left( 7\cdot 8-1\cdot 2 \right)\text{Vg}=6\text{ }\pi\text{ }\times \text{13}\cdot \text{2r}\times {{\text{v}}_{1}} $ … (3)
Now divide (3) by equation (2)
$ \begin{align}
&\Rightarrow \dfrac{\left( 7\cdot 8-1\cdot 2 \right)\text{Vg}}{\left( 7\cdot 8-1 \right)\text{Vg}}=\dfrac{13\cdot 2\text{r}\times 6\text{ }\pi\text{ }\times {{\text{V}}_{1}}}{8\cdot 5\times {{10}^{-4}}\text{r}\times 6\text{ }\pi\text{ }\times 10} \\
&\Rightarrow \dfrac{7\cdot 8-1\cdot 2}{7\cdot 8-1}=\dfrac{13\cdot 2\text{r}\times {{\text{V}}_{1}}}{8\cdot 5\times {{10}^{-4}}\text{r}\times 10} \\
&\Rightarrow \dfrac{6\cdot 6}{6\cdot 8}\times \dfrac{8\cdot 5\times {{10}^{-3}}}{13\cdot 2}={{\text{V}}_{1}} \\
&\Rightarrow \dfrac{56\cdot \times {{10}^{-3}}}{89\cdot 76}={{\text{V}}_{1}} \\
\end{align} $
$ \begin{align}
&\Rightarrow {{\text{V}}_{1}}=0\cdot 625\times {{10}^{-3}} \\
&\Rightarrow \text{ }=6\cdot 25\times {{10}^{-4}}\text{cm }{{\text{s}}^{-1}} \\
\end{align} $
Terminal velocity of ball in glycerin is $ 6\cdot 25\times {{10}^{-4}}\text{cm }{{\text{s}}^{-1}} $
Hence, option C is correct.
Note
The concept of terminal velocity is important in our daily life. This is the maximum velocity attainable by an object as it falls through a fluid. From terminal velocity we can find viscosity and density of liquid. We cannot fall faster than terminal velocity because the maximum speed we obtain when falling is called terminal velocity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

