
If $ b $ , $ c $ are any two non-collinear unit vectors and $ a $ is any vector, then $ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)= $
A. $ a $
B. $ b $
C. $ c $
D. None of these
Answer
562.8k+ views
Hint: In the problem we have given that $ b $ , $ c $ are any two non-collinear unit vectors and $ a $ is any vector, so we will assume the values of all the vectors we have given. Now we need to calculate the value of $ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)= $ , for this we need to calculate the individual values of $ a.b $ , $ a.c $ , $ a.\dfrac{b\times c}{\left| b\times c \right|} $ . Now we will substitute the calculated values in the given equation and simplify them to get the result.
Complete step by step answer:
Given that,
$ b $ , $ c $ are any two non-collinear unit vectors and $ a $ is any vector. We know that unit vectors are represented by $ \hat{i} $ , $ \hat{j} $ , $ \hat{k} $ .
Let $ b=\hat{i} $ , $ c=\hat{j} $ . Now the values of $ \left| b \right| $ , $ \left| c \right| $ is given by
$ \begin{align}
& \left| b \right|=\left| {\hat{i}} \right| \\
& \Rightarrow \left| b \right|=\sqrt{{{1}^{2}}} \\
& \Rightarrow \left| b \right|=1 \\
\end{align} $
Similarly, the value of $ \left| c \right|=1 $ .
Now the value of $ b\times c $ is given by
$ b\times c=\left| b \right|\left| c \right|\sin \alpha .k $
Substituting the values of $ \left| b \right| $ , $ \left| c \right| $ , then we will get
$ \begin{align}
& \Rightarrow b\times c=1.1\sin \alpha .k \\
& \Rightarrow b\times c=\sin \alpha .k \\
\end{align} $
Now the value of $ \left| b\times c \right| $ value is given by
$ \begin{align}
& \Rightarrow \left| b\times c \right|=\sqrt{{{\left( \sin \alpha \right)}^{2}}} \\
& \Rightarrow \left| b\times c \right|=\sin \alpha \\
\end{align} $
Now the value of $ \dfrac{b\times c}{\left| b\times c \right|} $ can be written as
$ \begin{align}
& \dfrac{b\times c}{\left| b\times c \right|}=\dfrac{\sin \alpha k}{\sin \alpha } \\
& \Rightarrow \dfrac{b\times c}{\left| b\times c \right|}=k \\
\end{align} $
Let $ a $ is any vector and that can be written as
$ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $
Now,
$ \begin{align}
& a.b=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\hat{i} \\
& \Rightarrow a.b={{a}_{1}}\left( \hat{i}.\hat{i} \right) \\
\end{align} $
We know that $ \hat{i}.\hat{i}=1 $ , then we will get
$ a.b={{a}_{1}} $
Similarly, the value of $ a.c={{a}_{2}} $ .
Now the value of $ a.\dfrac{b\times c}{\left| b\times c \right|} $ can be written as
$ \begin{align}
& a.\dfrac{b\times c}{\left| b\times c \right|}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\hat{k} \\
& \Rightarrow a.\dfrac{b\times c}{\left| b\times c \right|}={{a}_{3}}\left( \hat{k}.\hat{k} \right) \\
& \Rightarrow a.\dfrac{b\times c}{\left| b\times c \right|}={{a}_{3}} \\
\end{align} $
Finally, the value of given equation is $ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right) $
Substituting the all the values we have calculated in the above equation, then we will get
$ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.b+{{a}_{2}}.c+{{a}_{3}}\dfrac{b\times c}{\left| b\times c \right|} $
We have the $ b=\hat{i} $ , $ c=\hat{j} $ , $ \dfrac{b\times c}{\left| b\times c \right|}=k $ , then
$ \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.\hat{i}+{{a}_{2}}.\hat{j}+{{a}_{3}}\hat{k} $
Substituting the values of $ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $ in the above equation, then we will get
$ \begin{align}
& \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.\hat{i}+{{a}_{2}}.\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)=a \\
\end{align} $
$ \therefore $ Option - A is correct answer.
Note:
In the problem we have used dot product and vector product seamlessly. The dot product and vector products of the two vectors say $ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $ , $ b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} $ can be written as
$ \begin{align}
& a.b=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) \\
& \Rightarrow a.b={{a}_{1}}{{b}_{1}}\left( \hat{i}.\hat{i} \right)+{{a}_{2}}{{b}_{2}}\left( \hat{j}.\hat{j} \right)+{{a}_{3}}{{b}_{3}}\left( \hat{k}.\hat{k} \right) \\
\end{align} $
We know that $ \hat{i}.\hat{i}=1 $ , $ \hat{j}.\hat{j}=1 $ , $ \hat{k}.\hat{k}=1 $ hence
$ a.b={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} $
Similarly, we will calculate the dot product but we will use the formulas $ \hat{i}\times \hat{j}=\hat{k} $ , $ \hat{j}\times \hat{k}=\hat{i} $ , $ \hat{k}\times \hat{i}=\hat{j} $ , then we will get a vector quantity as the cross product of the two vectors.
Complete step by step answer:
Given that,
$ b $ , $ c $ are any two non-collinear unit vectors and $ a $ is any vector. We know that unit vectors are represented by $ \hat{i} $ , $ \hat{j} $ , $ \hat{k} $ .
Let $ b=\hat{i} $ , $ c=\hat{j} $ . Now the values of $ \left| b \right| $ , $ \left| c \right| $ is given by
$ \begin{align}
& \left| b \right|=\left| {\hat{i}} \right| \\
& \Rightarrow \left| b \right|=\sqrt{{{1}^{2}}} \\
& \Rightarrow \left| b \right|=1 \\
\end{align} $
Similarly, the value of $ \left| c \right|=1 $ .
Now the value of $ b\times c $ is given by
$ b\times c=\left| b \right|\left| c \right|\sin \alpha .k $
Substituting the values of $ \left| b \right| $ , $ \left| c \right| $ , then we will get
$ \begin{align}
& \Rightarrow b\times c=1.1\sin \alpha .k \\
& \Rightarrow b\times c=\sin \alpha .k \\
\end{align} $
Now the value of $ \left| b\times c \right| $ value is given by
$ \begin{align}
& \Rightarrow \left| b\times c \right|=\sqrt{{{\left( \sin \alpha \right)}^{2}}} \\
& \Rightarrow \left| b\times c \right|=\sin \alpha \\
\end{align} $
Now the value of $ \dfrac{b\times c}{\left| b\times c \right|} $ can be written as
$ \begin{align}
& \dfrac{b\times c}{\left| b\times c \right|}=\dfrac{\sin \alpha k}{\sin \alpha } \\
& \Rightarrow \dfrac{b\times c}{\left| b\times c \right|}=k \\
\end{align} $
Let $ a $ is any vector and that can be written as
$ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $
Now,
$ \begin{align}
& a.b=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\hat{i} \\
& \Rightarrow a.b={{a}_{1}}\left( \hat{i}.\hat{i} \right) \\
\end{align} $
We know that $ \hat{i}.\hat{i}=1 $ , then we will get
$ a.b={{a}_{1}} $
Similarly, the value of $ a.c={{a}_{2}} $ .
Now the value of $ a.\dfrac{b\times c}{\left| b\times c \right|} $ can be written as
$ \begin{align}
& a.\dfrac{b\times c}{\left| b\times c \right|}=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\hat{k} \\
& \Rightarrow a.\dfrac{b\times c}{\left| b\times c \right|}={{a}_{3}}\left( \hat{k}.\hat{k} \right) \\
& \Rightarrow a.\dfrac{b\times c}{\left| b\times c \right|}={{a}_{3}} \\
\end{align} $
Finally, the value of given equation is $ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right) $
Substituting the all the values we have calculated in the above equation, then we will get
$ \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.b+{{a}_{2}}.c+{{a}_{3}}\dfrac{b\times c}{\left| b\times c \right|} $
We have the $ b=\hat{i} $ , $ c=\hat{j} $ , $ \dfrac{b\times c}{\left| b\times c \right|}=k $ , then
$ \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.\hat{i}+{{a}_{2}}.\hat{j}+{{a}_{3}}\hat{k} $
Substituting the values of $ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $ in the above equation, then we will get
$ \begin{align}
& \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)={{a}_{1}}.\hat{i}+{{a}_{2}}.\hat{j}+{{a}_{3}}\hat{k} \\
& \Rightarrow \left( a.b \right)b+\left( a.c \right)c+\dfrac{a.\left( b+c \right)}{{{\left| b\times c \right|}^{2}}}\left( b\times c \right)=a \\
\end{align} $
$ \therefore $ Option - A is correct answer.
Note:
In the problem we have used dot product and vector product seamlessly. The dot product and vector products of the two vectors say $ a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} $ , $ b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} $ can be written as
$ \begin{align}
& a.b=\left( {{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} \right).\left( {{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} \right) \\
& \Rightarrow a.b={{a}_{1}}{{b}_{1}}\left( \hat{i}.\hat{i} \right)+{{a}_{2}}{{b}_{2}}\left( \hat{j}.\hat{j} \right)+{{a}_{3}}{{b}_{3}}\left( \hat{k}.\hat{k} \right) \\
\end{align} $
We know that $ \hat{i}.\hat{i}=1 $ , $ \hat{j}.\hat{j}=1 $ , $ \hat{k}.\hat{k}=1 $ hence
$ a.b={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} $
Similarly, we will calculate the dot product but we will use the formulas $ \hat{i}\times \hat{j}=\hat{k} $ , $ \hat{j}\times \hat{k}=\hat{i} $ , $ \hat{k}\times \hat{i}=\hat{j} $ , then we will get a vector quantity as the cross product of the two vectors.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

