
If $b < 0$then the roots ${x_1}{\text{ and }}{x_2}$ of the equation $2{x^2} + 6x + b = 0$ satisfy the condition that $\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right) + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) < K$ where $K$ is equal to:
A. $2$
B. $ - 2$
C. $0$
D. $4$
Answer
547.5k+ views
Hint:
If we are given the quadratic equation $a{x^2} + bx + c = 0$ then we can say that for this equation we have
Sum of roots$ = - \dfrac{b}{a}$
Product of roots$ = \dfrac{c}{a}$
Using this formula we can get our answer.
Complete step by step solution:
Now we are given the quadratic equation $2{x^2} + 6x + b = 0$ and also it has two roots ${x_1}{\text{ and }}{x_2}$ and also we know that$b < 0$. So as we know that if we are given the quadratic equation $a{x^2} + bx + c = 0$ the roots are two and they can be equal or unequal depending on whether they have the perfect square or not then we can say that for this equation we have
Sum of roots$ = - \dfrac{b}{a}$$ = = - \dfrac{{{\text{coffecient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Product of roots$ = \dfrac{c}{a}$$ = \dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
So for the equation $2{x^2} + 6x + b = 0$ we can say that
${x_1} + {x_2} = \dfrac{{ - 6}}{2}$
${x_1} + {x_2} = - 3$
${x_1}.{x_2} = \dfrac{b}{2}$
And we know for the real roots $D > 0$
$
{b^2} - 4ac > 0 \\
{6^2} - 4(2)(b) > 0 \\
36 - 8b > 0 \\
$
Now we are given that the roots satisfy the equation:
$\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right) + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) < K$
Taking the LCM we get that
$\left( {\dfrac{{{x_1}^2 + {x_2}^2}}{{{x_1}{x_2}}}} \right) < K - - - - - (1)$
We know that
${a^2} + {b^2} = {(a + b)^2} - 2ab$
So we can write (1) as
${x_1}^2 + {x_2}^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2}$
Now we know that ${x_1} + {x_2} = - 3$
${x_1}.{x_2} = \dfrac{b}{2}$
So putting their values we get that
$
\left( {\dfrac{{{{({x_1} + {x_2})}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}}} \right) < K \\
\Rightarrow \left( {\dfrac{{{{( - 3)}^2} - 2\dfrac{b}{2}}}{{\dfrac{b}{2}}}} \right) < K \\
\Rightarrow \dfrac{{18}}{b} - 2 < K \\
$
And we are given that $b < 0$ so we can say that $\dfrac{{18}}{b} - 2$ is always less than $ - 2$ and as $b < 0$ so $\dfrac{{18}}{b}$ must also be negative so we can say that
$\dfrac{{18}}{b} - 2 < - 2$
$\dfrac{{18}}{b} - 2 < K$
On comparing the above two we get that
$K = - 2$
Note:
For any quadratic equation $f(x) = $$a{x^2} + bx + c = 0$ if $f(x)$ is positive then it must follow the certain condition that is $a > 0$ and $D < 0$ where $D = {b^2} - 4ac$ so we can say for $a > 0$$D = {b^2} - 4ac < 0$ $f(x)$ will always be positive.
If we are given the quadratic equation $a{x^2} + bx + c = 0$ then we can say that for this equation we have
Sum of roots$ = - \dfrac{b}{a}$
Product of roots$ = \dfrac{c}{a}$
Using this formula we can get our answer.
Complete step by step solution:
Now we are given the quadratic equation $2{x^2} + 6x + b = 0$ and also it has two roots ${x_1}{\text{ and }}{x_2}$ and also we know that$b < 0$. So as we know that if we are given the quadratic equation $a{x^2} + bx + c = 0$ the roots are two and they can be equal or unequal depending on whether they have the perfect square or not then we can say that for this equation we have
Sum of roots$ = - \dfrac{b}{a}$$ = = - \dfrac{{{\text{coffecient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Product of roots$ = \dfrac{c}{a}$$ = \dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
So for the equation $2{x^2} + 6x + b = 0$ we can say that
${x_1} + {x_2} = \dfrac{{ - 6}}{2}$
${x_1} + {x_2} = - 3$
${x_1}.{x_2} = \dfrac{b}{2}$
And we know for the real roots $D > 0$
$
{b^2} - 4ac > 0 \\
{6^2} - 4(2)(b) > 0 \\
36 - 8b > 0 \\
$
Now we are given that the roots satisfy the equation:
$\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right) + \left( {\dfrac{{{x_2}}}{{{x_1}}}} \right) < K$
Taking the LCM we get that
$\left( {\dfrac{{{x_1}^2 + {x_2}^2}}{{{x_1}{x_2}}}} \right) < K - - - - - (1)$
We know that
${a^2} + {b^2} = {(a + b)^2} - 2ab$
So we can write (1) as
${x_1}^2 + {x_2}^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2}$
Now we know that ${x_1} + {x_2} = - 3$
${x_1}.{x_2} = \dfrac{b}{2}$
So putting their values we get that
$
\left( {\dfrac{{{{({x_1} + {x_2})}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}}} \right) < K \\
\Rightarrow \left( {\dfrac{{{{( - 3)}^2} - 2\dfrac{b}{2}}}{{\dfrac{b}{2}}}} \right) < K \\
\Rightarrow \dfrac{{18}}{b} - 2 < K \\
$
And we are given that $b < 0$ so we can say that $\dfrac{{18}}{b} - 2$ is always less than $ - 2$ and as $b < 0$ so $\dfrac{{18}}{b}$ must also be negative so we can say that
$\dfrac{{18}}{b} - 2 < - 2$
$\dfrac{{18}}{b} - 2 < K$
On comparing the above two we get that
$K = - 2$
Note:
For any quadratic equation $f(x) = $$a{x^2} + bx + c = 0$ if $f(x)$ is positive then it must follow the certain condition that is $a > 0$ and $D < 0$ where $D = {b^2} - 4ac$ so we can say for $a > 0$$D = {b^2} - 4ac < 0$ $f(x)$ will always be positive.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

