
If α and β are different complex numbers with $\left| \beta \right| = 1$, then find $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$.
Answer
555.9k+ views
Hint: Complex number can be written as $z = a + ib$. Where a, b are the real numbers.
Modulus of a complex number can be calculated as $\left| z \right| = \sqrt {{a^2} + {b^2}} $
Conjugate of a complex number can be calculated as $\overline z = a - ib$
Complete step-by-step answer:
it is given that, $\left| \beta \right| = 1$
We have to find the values of $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$. Where α and β are complex numbers.
Step1
let $\alpha = a + ib$; a, b are the real numbers.
And $\beta = p + iq$ ; p, q are the real numbers.
Step2
Modulus of $\alpha = \left| \alpha \right| = \sqrt {{a^2} + {b^2}} $
Modulus of $\beta = \left| \beta \right| = \sqrt {{p^2} + {q^2}} = 1$
$ \to {p^2} + {q^2} = 1$
Step 3
Conjugate of $\alpha = \mathop {\alpha = a - ib}\limits^\_ $
Step4
Now, $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ = \[\dfrac{{\left| {\beta - \alpha } \right|}}{{\left| {1 - \overline {\alpha \beta } } \right|}}\]
On putting values of $\alpha \& \beta $, we get
$ = \dfrac{{\left| {(p + iq) - (a + ib)} \right|}}{{\left| {1 - (a - ib)(p + iq)} \right|}}$
$ = \dfrac{{\left| {p + iq - a - ib} \right|}}{{\left| {1 - ap - aqi + bpi - bq)} \right|}}$
Separating Real and Imaginary parts,
$ = \dfrac{{\left| {(p - a) + (q - b)i} \right|}}{{\left| {(1 - ap - bq)(aq - bp)i} \right|}}$
Using formula of modulus of complex number,
$ = \dfrac{{\sqrt {{{(p - a)}^2} + {{(q - b)}^2}} }}{{\sqrt {{{(i - ap - bq)}^2} + {{(aq - bp)}^2}} }}$
$ = \dfrac{{\sqrt {{p^2} + {a^2} - 2pa + {q^2} + {b^2} - 2qb} }}{{\sqrt {1 + {a^2}{p^2} + {b^2}{q^2} - 2ap - 2bq + 2apqb + } {a^2}{q^2} + {b^2}{q^2} - 2aqbp}}$
On combining quantities according to identities,
\[ = \dfrac{{\sqrt {{p^2} + {q^2} + {b^2} + {a^2} - 2pa - 2qb} }}{{\sqrt {1 + {a^2}({p^2} + {q^2}) - ({p^2} + {q^2}){b^2} - 2ap - 2bq} }}\]
$\Rightarrow$ $ \dfrac{{{{\left[ {1 + {a^2} + {b^2} - 2pa - 2qb} \right]}^{\dfrac{1}{2}}}}}{{{{[1 + {a^2} + {b^2} - 2ap - 2bq]}^{\dfrac{1}{2}}}}} = 1$
Note: In case of complex numbers , modulus and conjugate are the two of the main properties of complex numbers.
In step1; we have just assigned the general values of α and β .
In step 2; moduli of α and β have been calculated.
In step 3; conjugates of α are calculated.
In step 4; the values from step 1, 2& 3 are substituted.
The given values of $\left| \beta \right| = 1$ Is also substituted.
Hence, the value of $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ Is 1.
When α and β are complex numbers and $\left| \beta \right| = 1$.
Modulus of a complex number can be calculated as $\left| z \right| = \sqrt {{a^2} + {b^2}} $
Conjugate of a complex number can be calculated as $\overline z = a - ib$
Complete step-by-step answer:
it is given that, $\left| \beta \right| = 1$
We have to find the values of $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$. Where α and β are complex numbers.
Step1
let $\alpha = a + ib$; a, b are the real numbers.
And $\beta = p + iq$ ; p, q are the real numbers.
Step2
Modulus of $\alpha = \left| \alpha \right| = \sqrt {{a^2} + {b^2}} $
Modulus of $\beta = \left| \beta \right| = \sqrt {{p^2} + {q^2}} = 1$
$ \to {p^2} + {q^2} = 1$
Step 3
Conjugate of $\alpha = \mathop {\alpha = a - ib}\limits^\_ $
Step4
Now, $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ = \[\dfrac{{\left| {\beta - \alpha } \right|}}{{\left| {1 - \overline {\alpha \beta } } \right|}}\]
On putting values of $\alpha \& \beta $, we get
$ = \dfrac{{\left| {(p + iq) - (a + ib)} \right|}}{{\left| {1 - (a - ib)(p + iq)} \right|}}$
$ = \dfrac{{\left| {p + iq - a - ib} \right|}}{{\left| {1 - ap - aqi + bpi - bq)} \right|}}$
Separating Real and Imaginary parts,
$ = \dfrac{{\left| {(p - a) + (q - b)i} \right|}}{{\left| {(1 - ap - bq)(aq - bp)i} \right|}}$
Using formula of modulus of complex number,
$ = \dfrac{{\sqrt {{{(p - a)}^2} + {{(q - b)}^2}} }}{{\sqrt {{{(i - ap - bq)}^2} + {{(aq - bp)}^2}} }}$
$ = \dfrac{{\sqrt {{p^2} + {a^2} - 2pa + {q^2} + {b^2} - 2qb} }}{{\sqrt {1 + {a^2}{p^2} + {b^2}{q^2} - 2ap - 2bq + 2apqb + } {a^2}{q^2} + {b^2}{q^2} - 2aqbp}}$
On combining quantities according to identities,
\[ = \dfrac{{\sqrt {{p^2} + {q^2} + {b^2} + {a^2} - 2pa - 2qb} }}{{\sqrt {1 + {a^2}({p^2} + {q^2}) - ({p^2} + {q^2}){b^2} - 2ap - 2bq} }}\]
$\Rightarrow$ $ \dfrac{{{{\left[ {1 + {a^2} + {b^2} - 2pa - 2qb} \right]}^{\dfrac{1}{2}}}}}{{{{[1 + {a^2} + {b^2} - 2ap - 2bq]}^{\dfrac{1}{2}}}}} = 1$
Note: In case of complex numbers , modulus and conjugate are the two of the main properties of complex numbers.
In step1; we have just assigned the general values of α and β .
In step 2; moduli of α and β have been calculated.
In step 3; conjugates of α are calculated.
In step 4; the values from step 1, 2& 3 are substituted.
The given values of $\left| \beta \right| = 1$ Is also substituted.
Hence, the value of $\left| {\dfrac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ Is 1.
When α and β are complex numbers and $\left| \beta \right| = 1$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

