Answer
Verified
446.4k+ views
Hint: Let us assume two numbers, a and b. We know that AM is arithmetic mean and is given as 9 in the question, therefore we get $ \dfrac{a+b}{2}=9 $ . Also, we know that HM is a harmonic mean and we are given that HM is 4, so we get $ \dfrac{2ab}{a+b}=4 $ .
Now, we know that GM is the geometric mean and it is given as $ GM=\sqrt{ab} $ . So, to find GM we need to find a value of $ ab $ and then substitute in $ GM=\sqrt{ab} $ to get the value of GM. For getting a value of $ ab $ , evaluate the equations of AM and GM.
Complete step-by-step answer:
Consider two numbers ‘a’ and ‘b’.
The arithmetic mean of a & b is defined as:
$ AM=\dfrac{a+b}{2} $
Since AM of a & b is given as 9.
Therefore, we can write:
$ \dfrac{a+b}{2}=9 $
$ a+b=18......(1) $
Now, the Harmonic mean of a & b is defined as:
$ HM=\dfrac{2ab}{a+b} $
Since HM of a & b is given as 4.
Therefore, we can write:
$ \dfrac{2ab}{a+b}=4 $
$ \begin{align}
& \Rightarrow ab=\dfrac{4\left( a+b \right)}{2} \\
& \Rightarrow ab=\dfrac{4\times 18}{2} \\
& \Rightarrow ab=36......(2) \\
\end{align} $
To calculate the geometric mean of a & b that is defined as:
$ GM=\sqrt{ab}......(3) $
Substitute the value of $ ab $ from equation (2) in equation (3), we get:
$ \begin{align}
& GM=\sqrt{36} \\
& GM=6 \\
\end{align} $
Note: We can also find geometric mean of two number by another method stated below:
The geometric mean of any two positive numbers can be given as $ {{\left( GM \right)}^{2}}=\left( AM \right)\left( HM \right) $
For the above question:
$ \begin{align}
& {{\left( GM \right)}^{2}}=\left( 9 \right)\left( 4 \right) \\
& =36
\end{align} $
$ \Rightarrow GM=6 $ $ \Rightarrow GM=6 $
Also, to check whether the answer is correct, always remember GM lies between harmonic mean (HM) and arithmetic mean (AM) of two numbers.
i.e. $ HM\le GM\le AM $
Now, we know that GM is the geometric mean and it is given as $ GM=\sqrt{ab} $ . So, to find GM we need to find a value of $ ab $ and then substitute in $ GM=\sqrt{ab} $ to get the value of GM. For getting a value of $ ab $ , evaluate the equations of AM and GM.
Complete step-by-step answer:
Consider two numbers ‘a’ and ‘b’.
The arithmetic mean of a & b is defined as:
$ AM=\dfrac{a+b}{2} $
Since AM of a & b is given as 9.
Therefore, we can write:
$ \dfrac{a+b}{2}=9 $
$ a+b=18......(1) $
Now, the Harmonic mean of a & b is defined as:
$ HM=\dfrac{2ab}{a+b} $
Since HM of a & b is given as 4.
Therefore, we can write:
$ \dfrac{2ab}{a+b}=4 $
$ \begin{align}
& \Rightarrow ab=\dfrac{4\left( a+b \right)}{2} \\
& \Rightarrow ab=\dfrac{4\times 18}{2} \\
& \Rightarrow ab=36......(2) \\
\end{align} $
To calculate the geometric mean of a & b that is defined as:
$ GM=\sqrt{ab}......(3) $
Substitute the value of $ ab $ from equation (2) in equation (3), we get:
$ \begin{align}
& GM=\sqrt{36} \\
& GM=6 \\
\end{align} $
Note: We can also find geometric mean of two number by another method stated below:
The geometric mean of any two positive numbers can be given as $ {{\left( GM \right)}^{2}}=\left( AM \right)\left( HM \right) $
For the above question:
$ \begin{align}
& {{\left( GM \right)}^{2}}=\left( 9 \right)\left( 4 \right) \\
& =36
\end{align} $
$ \Rightarrow GM=6 $ $ \Rightarrow GM=6 $
Also, to check whether the answer is correct, always remember GM lies between harmonic mean (HM) and arithmetic mean (AM) of two numbers.
i.e. $ HM\le GM\le AM $
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths