
If $\alpha =\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$, then the value of ${{\alpha }^{3}}-21\alpha -90$?
Answer
554.1k+ views
Hint: We start solving the problem by assuming $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$such that $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$. We then apply cubing on both sides of $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$ using the fact that ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ to find ${{\alpha }^{3}}$. We then make the necessary arrangements in ${{\alpha }^{3}}$ to proceed through the problem. We then find the value of ${{\left( xy \right)}^{\dfrac{1}{3}}}$ and substitute it in ${{\alpha }^{3}}$. We then also use $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$ and make necessary calculations to get the required answer.
Complete step-by-step answer:
According to the problem, we are given $\alpha =\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$ and we need to find the value of ${{\alpha }^{3}}-21\alpha -90$.
Let us assume $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$such that $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$.
Let us first find the value of ${{\alpha }^{3}}$.
So, we have $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$.
Let us now apply cubing on both sides.
$\Rightarrow {{\alpha }^{3}}={{\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right)}^{3}}$.
We know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$.
$\Rightarrow {{\alpha }^{3}}={{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+3{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{2}}{{y}^{\dfrac{1}{3}}}+3{{x}^{\dfrac{1}{3}}}{{\left( {{y}^{\dfrac{1}{3}}} \right)}^{2}}+{{\left( {{y}^{\dfrac{1}{3}}} \right)}^{3}}$.
$\Rightarrow {{\alpha }^{3}}=x+3\left( {{x}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}} \right){{x}^{\dfrac{1}{3}}}+3\left( {{x}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}} \right){{y}^{\dfrac{1}{3}}}+y$.
On simplifying, we get
$\Rightarrow {{\alpha }^{3}}=x+3{{\left( xy \right)}^{\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}+3{{\left( xy \right)}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}}+y$.
Taking factor ${{\left( xy \right)}^{\dfrac{1}{3}}}$common, we get
$\Rightarrow {{\alpha }^{3}}=\left( x+y \right)+3{{\left( xy \right)}^{\dfrac{1}{3}}}\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right).....(1)$.
Now we will find the value of $xy$,
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( \left( 45+29\sqrt{2} \right)\times \left( 45-29\sqrt{2} \right) \right)}^{\dfrac{1}{3}}}$.
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( 2025-1035\sqrt{2}+1035\sqrt{2}-1682 \right)}^{\dfrac{1}{3}}}$.
On simplifying, we get
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( 343 \right)}^{\dfrac{1}{3}}}$
As we know that,$343={{7}^{3}}$
So, ${{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( {{7}^{3}} \right)}^{\dfrac{1}{3}}}$
On solving we get
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}=7$ ---(2).
Let us substitute equation (2) in equation (1).
$\Rightarrow {{\alpha }^{3}}=\left( x+y \right)+3\left( 7 \right)\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right)$.
But we already know that $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$such that $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$.
$\Rightarrow {{\alpha }^{3}}=\left( \,\,45+29\sqrt{2}+45-29\sqrt{2} \right)+21\alpha $.
On solving, we get
$\Rightarrow {{\alpha }^{3}}=90+21\alpha $.
$\Rightarrow {{\alpha }^{3}}-21\alpha -90=0$.
∴ We have found the value of ${{\alpha }^{3}}-21\alpha -90$ as 0.
Note: We need to perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we this type of problems, we assign variables for the terms present inside the roots as it will make the simplification easier. We can also solve this problem by using the conjugate surds of one of the terms present in the square root. Similarly, we can expect problems to find the value of ${{\alpha }^{3}}-1$..
Complete step-by-step answer:
According to the problem, we are given $\alpha =\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$ and we need to find the value of ${{\alpha }^{3}}-21\alpha -90$.
Let us assume $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$such that $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$.
Let us first find the value of ${{\alpha }^{3}}$.
So, we have $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$.
Let us now apply cubing on both sides.
$\Rightarrow {{\alpha }^{3}}={{\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right)}^{3}}$.
We know that ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$.
$\Rightarrow {{\alpha }^{3}}={{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+3{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{2}}{{y}^{\dfrac{1}{3}}}+3{{x}^{\dfrac{1}{3}}}{{\left( {{y}^{\dfrac{1}{3}}} \right)}^{2}}+{{\left( {{y}^{\dfrac{1}{3}}} \right)}^{3}}$.
$\Rightarrow {{\alpha }^{3}}=x+3\left( {{x}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}} \right){{x}^{\dfrac{1}{3}}}+3\left( {{x}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}} \right){{y}^{\dfrac{1}{3}}}+y$.
On simplifying, we get
$\Rightarrow {{\alpha }^{3}}=x+3{{\left( xy \right)}^{\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}+3{{\left( xy \right)}^{\dfrac{1}{3}}}{{y}^{\dfrac{1}{3}}}+y$.
Taking factor ${{\left( xy \right)}^{\dfrac{1}{3}}}$common, we get
$\Rightarrow {{\alpha }^{3}}=\left( x+y \right)+3{{\left( xy \right)}^{\dfrac{1}{3}}}\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right).....(1)$.
Now we will find the value of $xy$,
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( \left( 45+29\sqrt{2} \right)\times \left( 45-29\sqrt{2} \right) \right)}^{\dfrac{1}{3}}}$.
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( 2025-1035\sqrt{2}+1035\sqrt{2}-1682 \right)}^{\dfrac{1}{3}}}$.
On simplifying, we get
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( 343 \right)}^{\dfrac{1}{3}}}$
As we know that,$343={{7}^{3}}$
So, ${{\left( xy \right)}^{\dfrac{1}{3}}}={{\left( {{7}^{3}} \right)}^{\dfrac{1}{3}}}$
On solving we get
$\Rightarrow {{\left( xy \right)}^{\dfrac{1}{3}}}=7$ ---(2).
Let us substitute equation (2) in equation (1).
$\Rightarrow {{\alpha }^{3}}=\left( x+y \right)+3\left( 7 \right)\left( {{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}} \right)$.
But we already know that $\alpha ={{x}^{\dfrac{1}{3}}}+{{y}^{\dfrac{1}{3}}}$such that $x=45+29\sqrt{2}$, $\,y=45-29\sqrt{2}$.
$\Rightarrow {{\alpha }^{3}}=\left( \,\,45+29\sqrt{2}+45-29\sqrt{2} \right)+21\alpha $.
On solving, we get
$\Rightarrow {{\alpha }^{3}}=90+21\alpha $.
$\Rightarrow {{\alpha }^{3}}-21\alpha -90=0$.
∴ We have found the value of ${{\alpha }^{3}}-21\alpha -90$ as 0.
Note: We need to perform each step carefully in order to avoid confusion and calculation mistakes. Whenever we this type of problems, we assign variables for the terms present inside the roots as it will make the simplification easier. We can also solve this problem by using the conjugate surds of one of the terms present in the square root. Similarly, we can expect problems to find the value of ${{\alpha }^{3}}-1$..
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

