
If $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$ is
A. ${x^2} - x - 1 = 0$
B. ${x^2} + x - 1 = 0$
C. ${x^2} - x + 1 = 0$
D. ${x^2} + x + 1 = 0$
Answer
564k+ views
Hint: In this problem, we have to find the quadratic equation whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$. We know that the sum of roots of quadratic equation $a{x^2} + bx + c$ is $ - \dfrac{b}{a}$ and the product of roots is $\dfrac{c}{a}$. We will use this information to find the required equation.
Complete step-by-step solution: In this problem, it is given that $\alpha $ is an imaginary root of the equation ${x^5} - 1 = 0$. That is, $\alpha $ satisfies the equation ${x^5} - 1 = 0$. Therefore, we can write ${\alpha ^5} - 1 = 0 \cdots \cdots \left( 1 \right)$
We know that the factorization of ${x^n} - 1$ is given by ${x^n} - 1 = \left( {x - 1} \right)\left( {1 + x + {x^2} + ... + {x^{n - 2}} + {x^{n - 1}}} \right)$. We will use this information in equation $\left( 1 \right)$. Therefore, we get
${\alpha ^5} - 1 = 0$
$ \Rightarrow \left( {\alpha - 1} \right)\left( {1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}} \right) = 0$
$ \Rightarrow \alpha - 1 = 0$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0\quad \left[ {\because ab = 0 \Rightarrow a = 0} \right.$ or $\left. {b = 0} \right]$
$ \Rightarrow \alpha = 1$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0$
It is given that $\alpha $ is an imaginary root. So, we can say that $\alpha \ne 1$ because $\alpha = 1$ is the real root. Therefore, we have only $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0 \cdots \cdots \left( 2 \right)$. Now from the equation $\left( 2 \right)$, we can write
$\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$
$ \Rightarrow \left( {\alpha + {\alpha ^4}} \right) + \left( {{\alpha ^2} + {\alpha ^3}} \right) = - 1 \cdots \cdots \left( 3 \right)$
From equation $\left( 3 \right)$, we can say that the sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
Let us multiply by $\alpha $ on both sides of the equation $\left( 1 \right)$. Therefore, we get ${\alpha ^6} = \alpha $ and ${\alpha ^7} = {\alpha ^2}$.
Let us find the product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ . Therefore, we get
$\left( {\alpha + {\alpha ^4}} \right)\left( {{\alpha ^2} + {\alpha ^3}} \right)$
$ = {\alpha ^3} + {\alpha ^4} + {\alpha ^6} + {\alpha ^7}$
$ = {\alpha ^3} + {\alpha ^4} + \alpha + {\alpha ^2}\quad \left[ {\because {\alpha ^6} = \alpha ,{\alpha ^7} = {\alpha ^2}} \right]$
$ = \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}$
$ = - 1$
Note that here we write $\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$ from equation $\left( 2 \right)$.
Now we have the following information:
$\left( 1 \right)$ The sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
$\left( 2 \right)$ The product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
Therefore, the required equation is
${x^2} - \left( { - 1} \right)x + \left( { - 1} \right) = 0$
$ \Rightarrow {x^2} + x - 1 = 0$
Therefore, if $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation is ${x^2} + x - 1 = 0$ whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$.
Therefore, option B is true.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Complete step-by-step solution: In this problem, it is given that $\alpha $ is an imaginary root of the equation ${x^5} - 1 = 0$. That is, $\alpha $ satisfies the equation ${x^5} - 1 = 0$. Therefore, we can write ${\alpha ^5} - 1 = 0 \cdots \cdots \left( 1 \right)$
We know that the factorization of ${x^n} - 1$ is given by ${x^n} - 1 = \left( {x - 1} \right)\left( {1 + x + {x^2} + ... + {x^{n - 2}} + {x^{n - 1}}} \right)$. We will use this information in equation $\left( 1 \right)$. Therefore, we get
${\alpha ^5} - 1 = 0$
$ \Rightarrow \left( {\alpha - 1} \right)\left( {1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}} \right) = 0$
$ \Rightarrow \alpha - 1 = 0$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0\quad \left[ {\because ab = 0 \Rightarrow a = 0} \right.$ or $\left. {b = 0} \right]$
$ \Rightarrow \alpha = 1$ or $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0$
It is given that $\alpha $ is an imaginary root. So, we can say that $\alpha \ne 1$ because $\alpha = 1$ is the real root. Therefore, we have only $1 + \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = 0 \cdots \cdots \left( 2 \right)$. Now from the equation $\left( 2 \right)$, we can write
$\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$
$ \Rightarrow \left( {\alpha + {\alpha ^4}} \right) + \left( {{\alpha ^2} + {\alpha ^3}} \right) = - 1 \cdots \cdots \left( 3 \right)$
From equation $\left( 3 \right)$, we can say that the sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
Let us multiply by $\alpha $ on both sides of the equation $\left( 1 \right)$. Therefore, we get ${\alpha ^6} = \alpha $ and ${\alpha ^7} = {\alpha ^2}$.
Let us find the product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ . Therefore, we get
$\left( {\alpha + {\alpha ^4}} \right)\left( {{\alpha ^2} + {\alpha ^3}} \right)$
$ = {\alpha ^3} + {\alpha ^4} + {\alpha ^6} + {\alpha ^7}$
$ = {\alpha ^3} + {\alpha ^4} + \alpha + {\alpha ^2}\quad \left[ {\because {\alpha ^6} = \alpha ,{\alpha ^7} = {\alpha ^2}} \right]$
$ = \alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4}$
$ = - 1$
Note that here we write $\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} = - 1$ from equation $\left( 2 \right)$.
Now we have the following information:
$\left( 1 \right)$ The sum of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
$\left( 2 \right)$ The product of two roots $\left( {\alpha + {\alpha ^4}} \right)$ and $\left( {{\alpha ^2} + {\alpha ^3}} \right)$ is $ - 1$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
Therefore, the required equation is
${x^2} - \left( { - 1} \right)x + \left( { - 1} \right) = 0$
$ \Rightarrow {x^2} + x - 1 = 0$
Therefore, if $\alpha $ is an imaginary root of ${x^5} - 1 = 0$ then the equation is ${x^2} + x - 1 = 0$ whose roots are $\alpha + {\alpha ^4}$ and ${\alpha ^2} + {\alpha ^3}$.
Therefore, option B is true.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

