
If $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$ then the equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is
a) $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
b) $ab{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
c) $ac{x^2} + \left( {a + b} \right)cx + a{\left( {a + c} \right)^2} = 0$
d) None of the above
Answer
590.7k+ views
Hint: We know that if $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$ then the sum of roots is given by $\alpha + \beta = - \dfrac{b}{a}$ and product of roots is given by $\alpha \beta = \dfrac{c}{a}$. We will use this information to find the equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Complete step-by-step answer:
It is given that $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$. So we can say that sum of roots is given by $\alpha + \beta = - \dfrac{b}{a} \cdots \cdots \left( 1 \right)$ and product of roots is given by $\alpha \beta = \dfrac{c}{a} \cdots \cdots \left( 2 \right)$. In this problem, we have to find an equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. First we will find sum of these two roots.
Let us find the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Therefore, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\alpha + \beta }}{{\alpha \beta }}} \right) \cdots \cdots \left( 3 \right)$
Now from $\left( 1 \right)$ and $\left( 2 \right)$, we will substitute values of $\alpha + \beta $ and $\alpha \beta $ in the equation $\left( 3 \right)$. So, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( { - \dfrac{b}{a}} \right) + \left( {\dfrac{{ - \dfrac{b}{a}}}{{\dfrac{c}{a}}}} \right)$
$ = - \dfrac{b}{a} - \dfrac{b}{c}$
$ = - b\left( {\dfrac{1}{a} + \dfrac{1}{c}} \right)$
$ = - b\left( {\dfrac{{c + a}}{{ac}}} \right)$
$ = - b\left( {\dfrac{{a + c}}{{ac}}} \right)$
Therefore, we can say that the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is $ - b\left( {\dfrac{{a + c}}{{ac}}} \right)$.
Now we will find the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. Therefore, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + \left( \alpha \right)\left( {\dfrac{1}{\alpha }} \right) + \left( {\dfrac{1}{\beta }} \right)\beta + \left( {\dfrac{1}{\beta }} \right)\left( {\dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + 1 + 1 + \dfrac{1}{{\beta \alpha }}$
$ = \alpha \beta + 2 + \dfrac{1}{{\alpha \beta }} \cdots \cdots \left( 4 \right)$
Now from $\left( 2 \right)$, we will substitute value of $\alpha \beta $ in the equation $\left( 4 \right)$. So, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \dfrac{c}{a} + 2 + \dfrac{1}{{\dfrac{c}{a}}}$
$ = \dfrac{c}{a} + 2 + \dfrac{a}{c}$
$ = \dfrac{{{c^2} + 2ac + {a^2}}}{{ac}}$
$ = \dfrac{{{a^2} + 2ac + {c^2}}}{{ac}}$
Now we are going to use the formula ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$ in the numerator, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right) = \dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$
Therefore, we can say that the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ which is $\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
$ \Rightarrow {x^2} - \left( {\dfrac{{ - b\left( {a + c} \right)}}{{ac}}} \right)x + \left[ {\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}} \right] = 0$
$ \Rightarrow \dfrac{{ac{x^2} + b\left( {a + c} \right)x + {{\left( {a + c} \right)}^2}}}{{ac}} = 0$
$ \Rightarrow ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
Therefore, the required equation is $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$.
Therefore, option (a) is correct.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Complete step-by-step answer:
It is given that $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$. So we can say that sum of roots is given by $\alpha + \beta = - \dfrac{b}{a} \cdots \cdots \left( 1 \right)$ and product of roots is given by $\alpha \beta = \dfrac{c}{a} \cdots \cdots \left( 2 \right)$. In this problem, we have to find an equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. First we will find sum of these two roots.
Let us find the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Therefore, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\alpha + \beta }}{{\alpha \beta }}} \right) \cdots \cdots \left( 3 \right)$
Now from $\left( 1 \right)$ and $\left( 2 \right)$, we will substitute values of $\alpha + \beta $ and $\alpha \beta $ in the equation $\left( 3 \right)$. So, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( { - \dfrac{b}{a}} \right) + \left( {\dfrac{{ - \dfrac{b}{a}}}{{\dfrac{c}{a}}}} \right)$
$ = - \dfrac{b}{a} - \dfrac{b}{c}$
$ = - b\left( {\dfrac{1}{a} + \dfrac{1}{c}} \right)$
$ = - b\left( {\dfrac{{c + a}}{{ac}}} \right)$
$ = - b\left( {\dfrac{{a + c}}{{ac}}} \right)$
Therefore, we can say that the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is $ - b\left( {\dfrac{{a + c}}{{ac}}} \right)$.
Now we will find the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. Therefore, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + \left( \alpha \right)\left( {\dfrac{1}{\alpha }} \right) + \left( {\dfrac{1}{\beta }} \right)\beta + \left( {\dfrac{1}{\beta }} \right)\left( {\dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + 1 + 1 + \dfrac{1}{{\beta \alpha }}$
$ = \alpha \beta + 2 + \dfrac{1}{{\alpha \beta }} \cdots \cdots \left( 4 \right)$
Now from $\left( 2 \right)$, we will substitute value of $\alpha \beta $ in the equation $\left( 4 \right)$. So, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \dfrac{c}{a} + 2 + \dfrac{1}{{\dfrac{c}{a}}}$
$ = \dfrac{c}{a} + 2 + \dfrac{a}{c}$
$ = \dfrac{{{c^2} + 2ac + {a^2}}}{{ac}}$
$ = \dfrac{{{a^2} + 2ac + {c^2}}}{{ac}}$
Now we are going to use the formula ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$ in the numerator, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right) = \dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$
Therefore, we can say that the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ which is $\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
$ \Rightarrow {x^2} - \left( {\dfrac{{ - b\left( {a + c} \right)}}{{ac}}} \right)x + \left[ {\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}} \right] = 0$
$ \Rightarrow \dfrac{{ac{x^2} + b\left( {a + c} \right)x + {{\left( {a + c} \right)}^2}}}{{ac}} = 0$
$ \Rightarrow ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
Therefore, the required equation is $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$.
Therefore, option (a) is correct.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

