
If $\alpha ,\beta$ are real and $$\alpha^{2} ,-\beta^{2}$$ are the roots of the quadratic equation $$a^{2}x^{2}+x+1-a^{2}=0$$;(a > 1), then $\beta^{2} =$
A) $$a^{2}$$
B) 1
C) $$1-a^{2}$$
D) $$1+a^{2}$$
Answer
598.5k+ views
Hint: In this question it is given that $$\alpha^{2} ,-\beta^{2}$$ are the roots of $$a^{2}x^{2}+x+1-a^{2}=0$$;(a > 1), then we have to find the value of $$\beta^{2}$$. So for this we have to know that if p and q are the root of the quadratic equation $rx^{2}+sx+t=0$, then we can write, $$p+q=\dfrac{-s}{r}$$ and $$pq=\dfrac{t}{r}$$
Complete step-by-step solution:
Given equation $$a^{2}x^{2}+x+1-a^{2}=0$$.......(1)
So comparing equation(1) with $rx^{2}+sx+t=0$ we can write,
r=$a^{2}$, s=1, t=$1-a^{2}$
And the roots are $$\alpha^{2} ,-\beta^{2}$$.
Therefore, by the above formula we can write,
$$\alpha^{2} +\left( -\beta^{2} \right) =\dfrac{-1}{a^{2}}$$
$$\Rightarrow \alpha^{2} -\beta^{2} =-\dfrac{1}{a^{2}}$$........(2)
And, $$\alpha^{2} \left( -\beta^{2} \right) =\dfrac{1-a^{2}}{a^{2}}$$
$$\Rightarrow \alpha^{2} \beta^{2} =\dfrac{a^{2}-1}{a^{2}}$$
$$\Rightarrow \alpha^{2} =\dfrac{a^{2}-1}{\beta^{2} a^{2}}$$.......(3)
Now putting the value of $\alpha^{2}$ in the equation (2), we get,
$$\dfrac{a^{2}-1}{\beta^{2} a^{2}} -\beta^{2} =-\dfrac{1}{a^{2}}$$
Let $$\beta^{2}=y$$, therefore, the above equation can be written as,
$$\dfrac{a^{2}-1}{ya^{2}} -y=-\dfrac{1}{a^{2}}$$
$$\Rightarrow a^{2}-1-y^{2}a^{2}=-\dfrac{1}{a^{2}} \times a^{2}y$$[multiplying both side by $$ya^{2}$$]
$$\Rightarrow a^{4}-a^{2}-y^{2}a^{4}=-a^{2}y$$[multiplying both side by $$a^{2}$$]
$$\Rightarrow a^{4}y^{2}-a^{2}y+a^{2}-a^{4}=0$$
$$\Rightarrow a^{4}y^{2}-a^{2}y+(a^{2}-a^{4})=0$$......(4)
Therefore, by quadratic formula,
$$y=\dfrac{-\left( -a^{2}\right) \pm \sqrt{\left( -a^{2}\right)^{2} -4\cdot a^{4}\cdot \left( a^{2}-a^{4}\right) } }{2a^{4}}$$
$$=\dfrac{a^{2}\pm \sqrt{a^{4}-4a^{6}+4a^{8}} }{2a^{4}}$$
$$=\dfrac{a^{2}\pm \sqrt{\left( a^{2}\right)^{2} -2\cdot a^{2}\cdot \left( 2a^{4}\right) +\left( 2a^{4}\right)^{2} } }{2a^{4}}$$
Since as we know that, $$x^{2}-2xy+y^{2}=\left( x-y\right)^{2} $$, so by using the identity we can write the above equation as,
$$y=\dfrac{a^{2}\pm \sqrt{\left( a^{2}-2a^{4}\right)^{2} } }{2a^{4}}$$
$$y=\dfrac{a^{2}\pm \left( a^{2}-2a^{4}\right) }{2a^{4}}$$
$$\ \text{Either,} \ y=\dfrac{a^{2}+\left( a^{2}-2a^{4}\right) }{2a^{4}} \ \text{or} \ y=\dfrac{a^{2}-\left( a^{2}-2a^{4}\right) }{2a^{4}}$$
Therefore,
$$y=\dfrac{2a^{2}-2a^{4}}{2a^{4}} \ \text{or} \ y=\dfrac{2a^{4}}{2a^{4}}$$
$$\Rightarrow y=\dfrac{2a^{2}\left( 1-a^{2}\right) }{2a^{4}} \ \text{or} \ y=1$$
$$\Rightarrow y=\dfrac{\left( 1-a^{2}\right) }{a^{2}} \ \text{or} \ y=1$$
$$\Rightarrow \beta^{2} =\dfrac{\left( 1-a^{2}\right) }{a^{2}} \ \text{or} \ \beta^{2} =1$$ [ since, $$y=\beta^{2}$$]
Therefore, the second value of $\beta^{2}$ is correct, i,e $$\beta^{2} =1$$.
Hence the correct option is option B.
Note: So you can also solve this in different way, since $-\beta^{2}$ is the root of the given equation $a^{2}x^{2}+x+1-a^{2}=0$, so you $-\beta^{2}$ must be satisfies the equation, i.e, you can put $-\beta^{2}$ in the place of ‘x’, which gives a quadratic equation of $\beta^{2}$ and after solving can able to find the solution.
Complete step-by-step solution:
Given equation $$a^{2}x^{2}+x+1-a^{2}=0$$.......(1)
So comparing equation(1) with $rx^{2}+sx+t=0$ we can write,
r=$a^{2}$, s=1, t=$1-a^{2}$
And the roots are $$\alpha^{2} ,-\beta^{2}$$.
Therefore, by the above formula we can write,
$$\alpha^{2} +\left( -\beta^{2} \right) =\dfrac{-1}{a^{2}}$$
$$\Rightarrow \alpha^{2} -\beta^{2} =-\dfrac{1}{a^{2}}$$........(2)
And, $$\alpha^{2} \left( -\beta^{2} \right) =\dfrac{1-a^{2}}{a^{2}}$$
$$\Rightarrow \alpha^{2} \beta^{2} =\dfrac{a^{2}-1}{a^{2}}$$
$$\Rightarrow \alpha^{2} =\dfrac{a^{2}-1}{\beta^{2} a^{2}}$$.......(3)
Now putting the value of $\alpha^{2}$ in the equation (2), we get,
$$\dfrac{a^{2}-1}{\beta^{2} a^{2}} -\beta^{2} =-\dfrac{1}{a^{2}}$$
Let $$\beta^{2}=y$$, therefore, the above equation can be written as,
$$\dfrac{a^{2}-1}{ya^{2}} -y=-\dfrac{1}{a^{2}}$$
$$\Rightarrow a^{2}-1-y^{2}a^{2}=-\dfrac{1}{a^{2}} \times a^{2}y$$[multiplying both side by $$ya^{2}$$]
$$\Rightarrow a^{4}-a^{2}-y^{2}a^{4}=-a^{2}y$$[multiplying both side by $$a^{2}$$]
$$\Rightarrow a^{4}y^{2}-a^{2}y+a^{2}-a^{4}=0$$
$$\Rightarrow a^{4}y^{2}-a^{2}y+(a^{2}-a^{4})=0$$......(4)
Therefore, by quadratic formula,
$$y=\dfrac{-\left( -a^{2}\right) \pm \sqrt{\left( -a^{2}\right)^{2} -4\cdot a^{4}\cdot \left( a^{2}-a^{4}\right) } }{2a^{4}}$$
$$=\dfrac{a^{2}\pm \sqrt{a^{4}-4a^{6}+4a^{8}} }{2a^{4}}$$
$$=\dfrac{a^{2}\pm \sqrt{\left( a^{2}\right)^{2} -2\cdot a^{2}\cdot \left( 2a^{4}\right) +\left( 2a^{4}\right)^{2} } }{2a^{4}}$$
Since as we know that, $$x^{2}-2xy+y^{2}=\left( x-y\right)^{2} $$, so by using the identity we can write the above equation as,
$$y=\dfrac{a^{2}\pm \sqrt{\left( a^{2}-2a^{4}\right)^{2} } }{2a^{4}}$$
$$y=\dfrac{a^{2}\pm \left( a^{2}-2a^{4}\right) }{2a^{4}}$$
$$\ \text{Either,} \ y=\dfrac{a^{2}+\left( a^{2}-2a^{4}\right) }{2a^{4}} \ \text{or} \ y=\dfrac{a^{2}-\left( a^{2}-2a^{4}\right) }{2a^{4}}$$
Therefore,
$$y=\dfrac{2a^{2}-2a^{4}}{2a^{4}} \ \text{or} \ y=\dfrac{2a^{4}}{2a^{4}}$$
$$\Rightarrow y=\dfrac{2a^{2}\left( 1-a^{2}\right) }{2a^{4}} \ \text{or} \ y=1$$
$$\Rightarrow y=\dfrac{\left( 1-a^{2}\right) }{a^{2}} \ \text{or} \ y=1$$
$$\Rightarrow \beta^{2} =\dfrac{\left( 1-a^{2}\right) }{a^{2}} \ \text{or} \ \beta^{2} =1$$ [ since, $$y=\beta^{2}$$]
Therefore, the second value of $\beta^{2}$ is correct, i,e $$\beta^{2} =1$$.
Hence the correct option is option B.
Note: So you can also solve this in different way, since $-\beta^{2}$ is the root of the given equation $a^{2}x^{2}+x+1-a^{2}=0$, so you $-\beta^{2}$ must be satisfies the equation, i.e, you can put $-\beta^{2}$ in the place of ‘x’, which gives a quadratic equation of $\beta^{2}$ and after solving can able to find the solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

