
If $\alpha \,and\,\beta $ are the roots of quadratic equation $a{{x}^{2}}+bx+c=0$ then find the value of \[{{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}\].
Answer
613.8k+ views
Hint: Firstly write the values of sum and product of the roots and then simplify the equation by using the formula \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\] and take ‘a’ common. Then use the values of sum and product of roots and then simplify the equation till you get \[S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( -\beta \right)}^{3}}}+\dfrac{1}{{{\left( -\alpha \right)}^{3}}} \right]\]. Then simplify the equation and used the formula \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\] and the values of sum and products of roots to get the final answer.
Complete step by step answer:
To solve the given question we will write down the given data first, therefore,
$a{{x}^{2}}+bx+c=0$ and $\alpha \,and\,\beta $ and the roots of the given quadratic equation.
TO proceed further in the solution we should know the formula given below,
Formula:
If \[p{{x}^{2}}+qx+r=0\] is a quadratic equation having its roots as ‘m’ and ‘n’ then,
\[m+n=\dfrac{-q}{p}\] and \[mn=\dfrac{r}{p}\]
By using the formula given above we can write the sum and products of roots of quadratic equation $a{{x}^{2}}+bx+c=0$ as follows,
\[\alpha +\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\] ……………………………………… (1)
Now we will write the expression given in the question and assume it as ‘S’,
\[\therefore S={{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}\] ……………………………………………………………. (2)
As we know that \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\] therefore by using this formula in the above equation we will get,
\[\therefore S=\dfrac{1}{{{\left( a\alpha +b \right)}^{3}}}+\dfrac{1}{{{\left( a\beta +b \right)}^{3}}}\]
If we take ‘a’ common from the above equation we will get,
\[\therefore S=\dfrac{1}{{{\left[ a\left( \alpha +\dfrac{b}{a} \right) \right]}^{3}}}+\dfrac{1}{{{\left[ a\left( \beta +\dfrac{b}{a} \right) \right]}^{3}}}\]
Above equation can also be simplified as,
\[\therefore S=\dfrac{1}{{{a}^{3}}{{\left( \alpha +\dfrac{b}{a} \right)}^{3}}}+\dfrac{1}{{{a}^{3}}{{\left( \beta +\dfrac{b}{a} \right)}^{3}}}\]
If we observe the above equation carefully then we will see that all the terms of above equation has \[\dfrac{1}{{{a}^{3}}}\] and therefore we can take it out therefore we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha +\dfrac{b}{a} \right)}^{3}}}+\dfrac{1}{{{\left( \beta +\dfrac{b}{a} \right)}^{3}}} \right]\]
We can replace \[\dfrac{b}{a}\] by \[-\left( -\dfrac{b}{a} \right)\] as both have same values therefore by replacing in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\left( -\dfrac{b}{a} \right) \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\left( -\dfrac{b}{a} \right) \right)}^{3}}} \right]\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\left( \alpha +\beta \right) \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\left( \alpha +\beta \right) \right)}^{3}}} \right]\]
Bu opening the brackets in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\alpha -\beta \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\alpha -\beta \right)}^{3}}} \right]\]
By simplifying the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( -\beta \right)}^{3}}}+\dfrac{1}{{{\left( -\alpha \right)}^{3}}} \right]\]
Further simplification in the above equation will give,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-1}{{{\beta }^{3}}}+\dfrac{-1}{{{\alpha }^{3}}} \right]\]
By performing addition in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-{{\alpha }^{3}}-{{\beta }^{3}}}{{{\beta }^{3}}{{\alpha }^{3}}} \right]\]
Further simplification in the above equation will give,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-\left( {{\alpha }^{3}}+{{\beta }^{3}} \right)}{{{\left( \beta \alpha \right)}^{3}}} \right]\]
Now to proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
Above formula can also be written as,
\[{{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
By using above formula in ‘S’ we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-\left( {{\left( \alpha +\beta \right)}^{3}}-3\alpha \beta \left( \alpha +\beta \right) \right)}{{{\left( \beta \alpha \right)}^{3}}} \right]\]
Above equation can also be written as,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{{{\left( \alpha +\beta \right)}^{3}}-3\alpha \beta \left( \alpha +\beta \right)}{{{\left( \alpha \beta \right)}^{3}}} \right]\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{{{\left( \dfrac{-b}{a} \right)}^{3}}-3\times \dfrac{c}{a}\times \left( \dfrac{-b}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{3}}} \right]\]
Further simplification in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3bc}{{{a}^{2}}} \right)}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
If we multiply both the numerator and denominator of \[\dfrac{-3bc}{{{a}^{2}}}\] by ‘a’ we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3bc}{{{a}^{2}}} \right)\times \dfrac{a}{a}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3abc}{{{a}^{3}}} \right)}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
By opening the bracket in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}+\dfrac{3abc}{{{a}^{3}}}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}}\times \dfrac{{{a}^{3}}}{{{c}^{3}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ -{{b}^{3}}+3abc\times \dfrac{1}{{{c}^{3}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{-{{b}^{3}}+3abc}{{{c}^{3}}} \right]\]
If we open the brackets we will get,
\[\therefore S=\dfrac{-1\left( -{{b}^{3}} \right)+\left( -1 \right)\left( 3abc \right)}{{{a}^{3}}{{c}^{3}}}\]
\[\therefore S=\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\]
If we compare the above equation with equation (2) we will get,
\[\therefore {{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}=\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\]
Therefore the value of \[{{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}\] is equal to \[\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\].
Note: Don’t use the formula \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] as if you use it then still you will lengthen your answer and still you will get confused. You can use the formula \[{{a}^{3}}+{{b}^{3}}=={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\] as I have derived it in the above example.
Complete step by step answer:
To solve the given question we will write down the given data first, therefore,
$a{{x}^{2}}+bx+c=0$ and $\alpha \,and\,\beta $ and the roots of the given quadratic equation.
TO proceed further in the solution we should know the formula given below,
Formula:
If \[p{{x}^{2}}+qx+r=0\] is a quadratic equation having its roots as ‘m’ and ‘n’ then,
\[m+n=\dfrac{-q}{p}\] and \[mn=\dfrac{r}{p}\]
By using the formula given above we can write the sum and products of roots of quadratic equation $a{{x}^{2}}+bx+c=0$ as follows,
\[\alpha +\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\] ……………………………………… (1)
Now we will write the expression given in the question and assume it as ‘S’,
\[\therefore S={{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}\] ……………………………………………………………. (2)
As we know that \[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\] therefore by using this formula in the above equation we will get,
\[\therefore S=\dfrac{1}{{{\left( a\alpha +b \right)}^{3}}}+\dfrac{1}{{{\left( a\beta +b \right)}^{3}}}\]
If we take ‘a’ common from the above equation we will get,
\[\therefore S=\dfrac{1}{{{\left[ a\left( \alpha +\dfrac{b}{a} \right) \right]}^{3}}}+\dfrac{1}{{{\left[ a\left( \beta +\dfrac{b}{a} \right) \right]}^{3}}}\]
Above equation can also be simplified as,
\[\therefore S=\dfrac{1}{{{a}^{3}}{{\left( \alpha +\dfrac{b}{a} \right)}^{3}}}+\dfrac{1}{{{a}^{3}}{{\left( \beta +\dfrac{b}{a} \right)}^{3}}}\]
If we observe the above equation carefully then we will see that all the terms of above equation has \[\dfrac{1}{{{a}^{3}}}\] and therefore we can take it out therefore we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha +\dfrac{b}{a} \right)}^{3}}}+\dfrac{1}{{{\left( \beta +\dfrac{b}{a} \right)}^{3}}} \right]\]
We can replace \[\dfrac{b}{a}\] by \[-\left( -\dfrac{b}{a} \right)\] as both have same values therefore by replacing in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\left( -\dfrac{b}{a} \right) \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\left( -\dfrac{b}{a} \right) \right)}^{3}}} \right]\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\left( \alpha +\beta \right) \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\left( \alpha +\beta \right) \right)}^{3}}} \right]\]
Bu opening the brackets in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( \alpha -\alpha -\beta \right)}^{3}}}+\dfrac{1}{{{\left( \beta -\alpha -\beta \right)}^{3}}} \right]\]
By simplifying the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{1}{{{\left( -\beta \right)}^{3}}}+\dfrac{1}{{{\left( -\alpha \right)}^{3}}} \right]\]
Further simplification in the above equation will give,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-1}{{{\beta }^{3}}}+\dfrac{-1}{{{\alpha }^{3}}} \right]\]
By performing addition in the above equation we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-{{\alpha }^{3}}-{{\beta }^{3}}}{{{\beta }^{3}}{{\alpha }^{3}}} \right]\]
Further simplification in the above equation will give,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-\left( {{\alpha }^{3}}+{{\beta }^{3}} \right)}{{{\left( \beta \alpha \right)}^{3}}} \right]\]
Now to proceed further in the solution we should know the formula given below,
Formula:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
Above formula can also be written as,
\[{{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\]
By using above formula in ‘S’ we will get,
\[\therefore S=\dfrac{1}{{{a}^{3}}}\left[ \dfrac{-\left( {{\left( \alpha +\beta \right)}^{3}}-3\alpha \beta \left( \alpha +\beta \right) \right)}{{{\left( \beta \alpha \right)}^{3}}} \right]\]
Above equation can also be written as,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{{{\left( \alpha +\beta \right)}^{3}}-3\alpha \beta \left( \alpha +\beta \right)}{{{\left( \alpha \beta \right)}^{3}}} \right]\]
If we put the values of equation (1) in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{{{\left( \dfrac{-b}{a} \right)}^{3}}-3\times \dfrac{c}{a}\times \left( \dfrac{-b}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{3}}} \right]\]
Further simplification in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3bc}{{{a}^{2}}} \right)}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
If we multiply both the numerator and denominator of \[\dfrac{-3bc}{{{a}^{2}}}\] by ‘a’ we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3bc}{{{a}^{2}}} \right)\times \dfrac{a}{a}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}-\left( \dfrac{-3abc}{{{a}^{3}}} \right)}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
By opening the bracket in the above equation we will get,
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}}{{{a}^{3}}}+\dfrac{3abc}{{{a}^{3}}}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{\dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}}}{\dfrac{{{c}^{3}}}{{{a}^{3}}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}}\times \dfrac{{{a}^{3}}}{{{c}^{3}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ -{{b}^{3}}+3abc\times \dfrac{1}{{{c}^{3}}} \right]\]
\[\therefore S=\dfrac{-1}{{{a}^{3}}}\left[ \dfrac{-{{b}^{3}}+3abc}{{{c}^{3}}} \right]\]
If we open the brackets we will get,
\[\therefore S=\dfrac{-1\left( -{{b}^{3}} \right)+\left( -1 \right)\left( 3abc \right)}{{{a}^{3}}{{c}^{3}}}\]
\[\therefore S=\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\]
If we compare the above equation with equation (2) we will get,
\[\therefore {{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}=\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\]
Therefore the value of \[{{\left( a\alpha +b \right)}^{-3}}+{{\left( a\beta +b \right)}^{-3}}\] is equal to \[\dfrac{{{b}^{3}}-3abc}{{{a}^{3}}{{c}^{3}}}\].
Note: Don’t use the formula \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\] as if you use it then still you will lengthen your answer and still you will get confused. You can use the formula \[{{a}^{3}}+{{b}^{3}}=={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)\] as I have derived it in the above example.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

