
If $\alpha $ and $\beta $ be two distinct real numbers such that \[\left( \alpha -\beta \right)\ne 2n\pi \] for any integer n satisfying the equations \[a\text{ }cos\text{ }\theta +b\text{ }sin\text{ }\theta =c\] then prove that $\cos \left( \alpha +\beta \right)=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}$.
Answer
606.9k+ views
Hint: In this question, $\alpha $ and $\beta $ are two different roots satisfying the equation \[a\text{ }cos\text{ }\theta +b\text{ }sin\text{ }\theta =c\].You can use factorization formulas or sum to product formulas$\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right) $, \[\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\].
Complete step by step answer:
As $\alpha $ and $\beta $ are two roots of the equation\[a\text{ }cos\text{ }\theta +b\text{ }sin\text{ }\theta =c\], we get
\[a\text{ }cos\text{ }\alpha +b\text{ }sin\text{ }\alpha =c......................(1)\]
\[a\text{ }cos\text{ }\beta +b\text{ }sin\text{ }\beta =c......................(2)\]
Subtracted equation (2) from the equation (1), we get
\[a\text{ }\left( cos\text{ }\alpha -\cos \beta \right)+b\text{ }\left( \sin \alpha -\sin \beta \right)=0\]
Applying the factorization or sum to product formula $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$ , we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]+b\text{ }\left( \sin \alpha -\sin \beta \right)=0\]
Also, applying the factorization or sum to product formula\[\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\], we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]+b\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\alpha -\beta }{2} \right) \right]=0..........(3)\]
We know that, $\sin (-\theta )=-\sin \theta $
$\sin \left( \dfrac{\alpha -\beta }{2} \right)=\sin \left[ -\left( \dfrac{\beta -\alpha }{2} \right) \right]=-\sin \left[ \left( \dfrac{\beta -\alpha }{2} \right) \right]$
Now put this value in the equation (3), we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]-b\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]=0..........(3)\]
Dividing both sides by $2\sin \left( \dfrac{\beta -\alpha }{2} \right)$ , we get
\[a\sin \left( \dfrac{\alpha +\beta }{2} \right)-b\cos \left( \dfrac{\alpha +\beta }{2} \right)=0..................(4)\]
It is given that $\alpha -\beta \ne 2n\pi $ and dividing both sides by 2, we have
$\dfrac{\alpha -\beta }{2}\ne n\pi $
Taking sine on the both sides, we get
$\sin \left( \dfrac{\alpha -\beta }{2} \right)\ne \sin n\pi $
We know that
$\sin n\pi =0$ for all values of n
$\sin \left( \dfrac{\alpha -\beta }{2} \right)\ne \sin n\pi =0$
Dividing equation (4) by $\cos \left( \dfrac{\alpha +\beta }{2} \right)$ , we get
$\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{b}{a}..............(5)$
The cosine double angle formula tells us that $\cos \theta $ is always equal to, \[\cos \theta =\dfrac{1-{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}\]
Now put $\theta =\alpha +\beta $ in the above formula, we get
\[\cos (\alpha +\beta )=\dfrac{1-{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}...........(6)\]
Put the value of $\tan \left( \dfrac{\alpha +\beta }{2} \right)$ is $\dfrac{b}{a}$ in the equation (6), we get
\[\cos (\alpha +\beta )=\dfrac{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]
\[\cos (\alpha +\beta )=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]
Hence proved.
Note: The sine double angle formula tells us that $\sin \theta $ is always equal to $\dfrac{2\tan \dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$ . In this you can put $\theta =\alpha +\beta $ and we have
\[\sin \left( \alpha +\beta \right)=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}=\dfrac{2\dfrac{b}{a}}{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}=\dfrac{2b}{\dfrac{{{a}^{2}}+{{b}^{2}}}{a}}=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Complete step by step answer:
As $\alpha $ and $\beta $ are two roots of the equation\[a\text{ }cos\text{ }\theta +b\text{ }sin\text{ }\theta =c\], we get
\[a\text{ }cos\text{ }\alpha +b\text{ }sin\text{ }\alpha =c......................(1)\]
\[a\text{ }cos\text{ }\beta +b\text{ }sin\text{ }\beta =c......................(2)\]
Subtracted equation (2) from the equation (1), we get
\[a\text{ }\left( cos\text{ }\alpha -\cos \beta \right)+b\text{ }\left( \sin \alpha -\sin \beta \right)=0\]
Applying the factorization or sum to product formula $\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)$ , we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]+b\text{ }\left( \sin \alpha -\sin \beta \right)=0\]
Also, applying the factorization or sum to product formula\[\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\], we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]+b\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\alpha -\beta }{2} \right) \right]=0..........(3)\]
We know that, $\sin (-\theta )=-\sin \theta $
$\sin \left( \dfrac{\alpha -\beta }{2} \right)=\sin \left[ -\left( \dfrac{\beta -\alpha }{2} \right) \right]=-\sin \left[ \left( \dfrac{\beta -\alpha }{2} \right) \right]$
Now put this value in the equation (3), we get
\[a\left[ 2\sin \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]-b\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right) \right]=0..........(3)\]
Dividing both sides by $2\sin \left( \dfrac{\beta -\alpha }{2} \right)$ , we get
\[a\sin \left( \dfrac{\alpha +\beta }{2} \right)-b\cos \left( \dfrac{\alpha +\beta }{2} \right)=0..................(4)\]
It is given that $\alpha -\beta \ne 2n\pi $ and dividing both sides by 2, we have
$\dfrac{\alpha -\beta }{2}\ne n\pi $
Taking sine on the both sides, we get
$\sin \left( \dfrac{\alpha -\beta }{2} \right)\ne \sin n\pi $
We know that
$\sin n\pi =0$ for all values of n
$\sin \left( \dfrac{\alpha -\beta }{2} \right)\ne \sin n\pi =0$
Dividing equation (4) by $\cos \left( \dfrac{\alpha +\beta }{2} \right)$ , we get
$\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{b}{a}..............(5)$
The cosine double angle formula tells us that $\cos \theta $ is always equal to, \[\cos \theta =\dfrac{1-{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}\]
Now put $\theta =\alpha +\beta $ in the above formula, we get
\[\cos (\alpha +\beta )=\dfrac{1-{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}...........(6)\]
Put the value of $\tan \left( \dfrac{\alpha +\beta }{2} \right)$ is $\dfrac{b}{a}$ in the equation (6), we get
\[\cos (\alpha +\beta )=\dfrac{1-\dfrac{{{b}^{2}}}{{{a}^{2}}}}{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]
\[\cos (\alpha +\beta )=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\]
Hence proved.
Note: The sine double angle formula tells us that $\sin \theta $ is always equal to $\dfrac{2\tan \dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$ . In this you can put $\theta =\alpha +\beta $ and we have
\[\sin \left( \alpha +\beta \right)=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}=\dfrac{2\dfrac{b}{a}}{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}=\dfrac{2b}{\dfrac{{{a}^{2}}+{{b}^{2}}}{a}}=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

