
If \[\alpha \] and $\beta $ are the zeros of the quadratic polynomial $f(x) = a{x^2} + bx + c$ , then evaluate: \[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
Answer
553.2k+ views
Hint: First of all, we will find out the sum and products of roots for the given equation, and simplify the terms we want to evaluate, and put the values of sum and products of roots in the simplified equation, then we will get the final value.
Complete step-by-step answer:
As per the question, \[\alpha \] and $\beta $ are the zeros or roots of the quadratic polynomial $f(x) = a{x^2} + bx + c$, this is a general quadratic equation so, their roots are also general.
Therefore, as per the given equation sum and product of these roots will be as below:
As we know the sum of the root of an equation, $\alpha + \beta = \dfrac{{ - b}}{a}$
And product of roots, $\alpha \beta = \dfrac{c}{a}$
Now, we will simplify the equation which we want to evaluate by taking L.C.M.
\[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
While taking L.C.M. In numerator, we will multiply $\beta $ with $(a\beta + b)$ , $\alpha $with $(a\alpha + b)$ and in denominator we will multiply $(a\alpha + b)$ with $(a\beta + b)$
Here, the result of L.C.M.
$ = \dfrac{{a{\beta ^2} + \beta b + a{\alpha ^2} + b\alpha }}{{{a^2}\alpha \beta + a\alpha b + ab\beta + {b^2}}}$
Now, we will take commons from the numerator: $a$ common from first, third terms and take $b$ common from second, fourth terms.
Take commons from the denominator: $ab$ second and third terms.
After that we get $ = \dfrac{{a({\beta ^2} + {\alpha ^2}) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}$
We have an identity ${a^2} + {b^2} = {(a + b)^2} - 2ab$, which we can put in the first term of the numerator.
Then, we get $ = \dfrac{{a({{(\beta + \alpha )}^2} - 2\alpha \beta ) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}......(1)$
Now, we will put the values of $\alpha + \beta $and $\alpha \beta $ in equation $(1)$
After putting values we get: \[\dfrac{{a\left( {{{\left( {\dfrac{{ - b}}{a}} \right)}^2} - \dfrac{c}{a}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{ab\left( {\dfrac{{ - b}}{a}} \right) + {a^2} \times \dfrac{c}{a} + {b^2}}}\]
We will simplify the above equation by expanding each term.
\[ = \dfrac{{{a}\left( {\dfrac{{{b^2} - 2ac}}{{{a} \times a}}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{{a}b\left( {\dfrac{{ - b}}{{{a}}}} \right) + \dfrac{{{a} \times a \times c}}{{{a}}} + {b^2}}}\]
Here, we cancel out negative ${b^2}$ with positive ${b^2}$ and $a$ , $c$ present in numerator and denominator.
\[ = \dfrac{{\dfrac{{{{{b}}^2} - 2c{a} - {{{b}}^2}}}{{{a}}}}}{{ - {{{b}}^2} + ac + {{{b}}^2}}} = \dfrac{{ - 2{c}}}{{a{c}}}\]
$ \Rightarrow \dfrac{{ - 2}}{a}$. Finally, this is the result for above evaluation
Note: We should remember that we should simplify the equation and also put identities that are required to reach the point where we can put the values of sum and product of roots of the given equation.
Complete step-by-step answer:
As per the question, \[\alpha \] and $\beta $ are the zeros or roots of the quadratic polynomial $f(x) = a{x^2} + bx + c$, this is a general quadratic equation so, their roots are also general.
Therefore, as per the given equation sum and product of these roots will be as below:
As we know the sum of the root of an equation, $\alpha + \beta = \dfrac{{ - b}}{a}$
And product of roots, $\alpha \beta = \dfrac{c}{a}$
Now, we will simplify the equation which we want to evaluate by taking L.C.M.
\[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
While taking L.C.M. In numerator, we will multiply $\beta $ with $(a\beta + b)$ , $\alpha $with $(a\alpha + b)$ and in denominator we will multiply $(a\alpha + b)$ with $(a\beta + b)$
Here, the result of L.C.M.
$ = \dfrac{{a{\beta ^2} + \beta b + a{\alpha ^2} + b\alpha }}{{{a^2}\alpha \beta + a\alpha b + ab\beta + {b^2}}}$
Now, we will take commons from the numerator: $a$ common from first, third terms and take $b$ common from second, fourth terms.
Take commons from the denominator: $ab$ second and third terms.
After that we get $ = \dfrac{{a({\beta ^2} + {\alpha ^2}) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}$
We have an identity ${a^2} + {b^2} = {(a + b)^2} - 2ab$, which we can put in the first term of the numerator.
Then, we get $ = \dfrac{{a({{(\beta + \alpha )}^2} - 2\alpha \beta ) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}......(1)$
Now, we will put the values of $\alpha + \beta $and $\alpha \beta $ in equation $(1)$
After putting values we get: \[\dfrac{{a\left( {{{\left( {\dfrac{{ - b}}{a}} \right)}^2} - \dfrac{c}{a}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{ab\left( {\dfrac{{ - b}}{a}} \right) + {a^2} \times \dfrac{c}{a} + {b^2}}}\]
We will simplify the above equation by expanding each term.
\[ = \dfrac{{{a}\left( {\dfrac{{{b^2} - 2ac}}{{{a} \times a}}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{{a}b\left( {\dfrac{{ - b}}{{{a}}}} \right) + \dfrac{{{a} \times a \times c}}{{{a}}} + {b^2}}}\]
Here, we cancel out negative ${b^2}$ with positive ${b^2}$ and $a$ , $c$ present in numerator and denominator.
\[ = \dfrac{{\dfrac{{{{{b}}^2} - 2c{a} - {{{b}}^2}}}{{{a}}}}}{{ - {{{b}}^2} + ac + {{{b}}^2}}} = \dfrac{{ - 2{c}}}{{a{c}}}\]
$ \Rightarrow \dfrac{{ - 2}}{a}$. Finally, this is the result for above evaluation
Note: We should remember that we should simplify the equation and also put identities that are required to reach the point where we can put the values of sum and product of roots of the given equation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

