
If \[\alpha \] and $\beta $ are the zeros of the quadratic polynomial $f(x) = a{x^2} + bx + c$ , then evaluate: \[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
Answer
482.7k+ views
Hint: First of all, we will find out the sum and products of roots for the given equation, and simplify the terms we want to evaluate, and put the values of sum and products of roots in the simplified equation, then we will get the final value.
Complete step-by-step answer:
As per the question, \[\alpha \] and $\beta $ are the zeros or roots of the quadratic polynomial $f(x) = a{x^2} + bx + c$, this is a general quadratic equation so, their roots are also general.
Therefore, as per the given equation sum and product of these roots will be as below:
As we know the sum of the root of an equation, $\alpha + \beta = \dfrac{{ - b}}{a}$
And product of roots, $\alpha \beta = \dfrac{c}{a}$
Now, we will simplify the equation which we want to evaluate by taking L.C.M.
\[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
While taking L.C.M. In numerator, we will multiply $\beta $ with $(a\beta + b)$ , $\alpha $with $(a\alpha + b)$ and in denominator we will multiply $(a\alpha + b)$ with $(a\beta + b)$
Here, the result of L.C.M.
$ = \dfrac{{a{\beta ^2} + \beta b + a{\alpha ^2} + b\alpha }}{{{a^2}\alpha \beta + a\alpha b + ab\beta + {b^2}}}$
Now, we will take commons from the numerator: $a$ common from first, third terms and take $b$ common from second, fourth terms.
Take commons from the denominator: $ab$ second and third terms.
After that we get $ = \dfrac{{a({\beta ^2} + {\alpha ^2}) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}$
We have an identity ${a^2} + {b^2} = {(a + b)^2} - 2ab$, which we can put in the first term of the numerator.
Then, we get $ = \dfrac{{a({{(\beta + \alpha )}^2} - 2\alpha \beta ) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}......(1)$
Now, we will put the values of $\alpha + \beta $and $\alpha \beta $ in equation $(1)$
After putting values we get: \[\dfrac{{a\left( {{{\left( {\dfrac{{ - b}}{a}} \right)}^2} - \dfrac{c}{a}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{ab\left( {\dfrac{{ - b}}{a}} \right) + {a^2} \times \dfrac{c}{a} + {b^2}}}\]
We will simplify the above equation by expanding each term.
\[ = \dfrac{{{a}\left( {\dfrac{{{b^2} - 2ac}}{{{a} \times a}}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{{a}b\left( {\dfrac{{ - b}}{{{a}}}} \right) + \dfrac{{{a} \times a \times c}}{{{a}}} + {b^2}}}\]
Here, we cancel out negative ${b^2}$ with positive ${b^2}$ and $a$ , $c$ present in numerator and denominator.
\[ = \dfrac{{\dfrac{{{{{b}}^2} - 2c{a} - {{{b}}^2}}}{{{a}}}}}{{ - {{{b}}^2} + ac + {{{b}}^2}}} = \dfrac{{ - 2{c}}}{{a{c}}}\]
$ \Rightarrow \dfrac{{ - 2}}{a}$. Finally, this is the result for above evaluation
Note: We should remember that we should simplify the equation and also put identities that are required to reach the point where we can put the values of sum and product of roots of the given equation.
Complete step-by-step answer:
As per the question, \[\alpha \] and $\beta $ are the zeros or roots of the quadratic polynomial $f(x) = a{x^2} + bx + c$, this is a general quadratic equation so, their roots are also general.
Therefore, as per the given equation sum and product of these roots will be as below:
As we know the sum of the root of an equation, $\alpha + \beta = \dfrac{{ - b}}{a}$
And product of roots, $\alpha \beta = \dfrac{c}{a}$
Now, we will simplify the equation which we want to evaluate by taking L.C.M.
\[\dfrac{\beta }{{a\alpha + b}} + \dfrac{\alpha }{{a\beta + b}}\]
While taking L.C.M. In numerator, we will multiply $\beta $ with $(a\beta + b)$ , $\alpha $with $(a\alpha + b)$ and in denominator we will multiply $(a\alpha + b)$ with $(a\beta + b)$
Here, the result of L.C.M.
$ = \dfrac{{a{\beta ^2} + \beta b + a{\alpha ^2} + b\alpha }}{{{a^2}\alpha \beta + a\alpha b + ab\beta + {b^2}}}$
Now, we will take commons from the numerator: $a$ common from first, third terms and take $b$ common from second, fourth terms.
Take commons from the denominator: $ab$ second and third terms.
After that we get $ = \dfrac{{a({\beta ^2} + {\alpha ^2}) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}$
We have an identity ${a^2} + {b^2} = {(a + b)^2} - 2ab$, which we can put in the first term of the numerator.
Then, we get $ = \dfrac{{a({{(\beta + \alpha )}^2} - 2\alpha \beta ) + b(\alpha + \beta )}}{{ab(\alpha + \beta ) + {a^2}\alpha \beta + {b^2}}}......(1)$
Now, we will put the values of $\alpha + \beta $and $\alpha \beta $ in equation $(1)$
After putting values we get: \[\dfrac{{a\left( {{{\left( {\dfrac{{ - b}}{a}} \right)}^2} - \dfrac{c}{a}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{ab\left( {\dfrac{{ - b}}{a}} \right) + {a^2} \times \dfrac{c}{a} + {b^2}}}\]
We will simplify the above equation by expanding each term.
\[ = \dfrac{{{a}\left( {\dfrac{{{b^2} - 2ac}}{{{a} \times a}}} \right) + b\left( {\dfrac{{ - b}}{a}} \right)}}{{{a}b\left( {\dfrac{{ - b}}{{{a}}}} \right) + \dfrac{{{a} \times a \times c}}{{{a}}} + {b^2}}}\]
Here, we cancel out negative ${b^2}$ with positive ${b^2}$ and $a$ , $c$ present in numerator and denominator.
\[ = \dfrac{{\dfrac{{{{{b}}^2} - 2c{a} - {{{b}}^2}}}{{{a}}}}}{{ - {{{b}}^2} + ac + {{{b}}^2}}} = \dfrac{{ - 2{c}}}{{a{c}}}\]
$ \Rightarrow \dfrac{{ - 2}}{a}$. Finally, this is the result for above evaluation
Note: We should remember that we should simplify the equation and also put identities that are required to reach the point where we can put the values of sum and product of roots of the given equation.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
