
If $\alpha $ and $\beta $ , are the roots of the quadratic equation ${x^2} + bx + c = 0$ where c < 0 < b , then
A. 0 < $\alpha $ < $\beta $
B. $\alpha $ < 0 < $\beta $ < $\left| \alpha \right|$
C. $\alpha $ < $\beta $ < 0
D. $\alpha $ < 0 < $\left| \alpha \right|$ < $\beta $
Answer
506.7k+ views
Hint: We have to use the given condition along with the relationship between sum and product of roots with the coefficients and the constant term.
Complete step-by-step answer:
Given equation is ${x^2} + bx + c = 0$
It is given that $\alpha $ and $\beta $ are the roots of the equation.
$ \Rightarrow $ Sum of roots = $\alpha + \beta = - \dfrac{\text{coefficient of x}}{\text{coefficient of }x^2} = \dfrac{{ - b}}{1} = - b$
$ \Rightarrow $ Product of roots = $\alpha \beta = \dfrac{\text{constant}}{\text{coefficient of }x^2} = \dfrac{c}{1} = c $
It is given that c < 0 < b …… (1)
$ \Rightarrow $ c < 0
$ \Rightarrow $ $\alpha $$\beta $ < 0
$ \Rightarrow $ One root is negative
Let us suppose $\alpha $ is negative
$ \Rightarrow $ $\beta $ is positive
$ \Rightarrow $ $\alpha $ < 0 < $\beta $ …… (2)
From equation (1)
b > 0
$ \Rightarrow $ -b < 0
Now, $\alpha $ + $\beta $ = $ - b$
$ \Rightarrow $ $\alpha $ + $\beta $ < 0
$ \Rightarrow $ -$\alpha $ > $\beta $
$ \Rightarrow $ \[\left| \alpha \right| > \beta \] …… (3)
So, from equation (2) and (3)
$ \Rightarrow $$\alpha $ < 0 < $\beta $ < \[\left| \alpha \right|\]
So, option B is your correct answer.
Note: To solve these types of problems, we have to use the relationship between sum and product of roots with the coefficients and the constant term. Mistakes can be made in dealing with signs in presence of inequality, so try to avoid that.
Complete step-by-step answer:
Given equation is ${x^2} + bx + c = 0$
It is given that $\alpha $ and $\beta $ are the roots of the equation.
$ \Rightarrow $ Sum of roots = $\alpha + \beta = - \dfrac{\text{coefficient of x}}{\text{coefficient of }x^2} = \dfrac{{ - b}}{1} = - b$
$ \Rightarrow $ Product of roots = $\alpha \beta = \dfrac{\text{constant}}{\text{coefficient of }x^2} = \dfrac{c}{1} = c $
It is given that c < 0 < b …… (1)
$ \Rightarrow $ c < 0
$ \Rightarrow $ $\alpha $$\beta $ < 0
$ \Rightarrow $ One root is negative
Let us suppose $\alpha $ is negative
$ \Rightarrow $ $\beta $ is positive
$ \Rightarrow $ $\alpha $ < 0 < $\beta $ …… (2)
From equation (1)
b > 0
$ \Rightarrow $ -b < 0
Now, $\alpha $ + $\beta $ = $ - b$
$ \Rightarrow $ $\alpha $ + $\beta $ < 0
$ \Rightarrow $ -$\alpha $ > $\beta $
$ \Rightarrow $ \[\left| \alpha \right| > \beta \] …… (3)
So, from equation (2) and (3)
$ \Rightarrow $$\alpha $ < 0 < $\beta $ < \[\left| \alpha \right|\]
So, option B is your correct answer.
Note: To solve these types of problems, we have to use the relationship between sum and product of roots with the coefficients and the constant term. Mistakes can be made in dealing with signs in presence of inequality, so try to avoid that.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

