
If $\alpha +\beta +\gamma =2\pi $ , then
A.$\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
B.$\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=2\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
C.$\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
D.None of these
Answer
590.1k+ views
Hint: Divide the whole equation $\alpha +\beta +\gamma =2\pi $ by 2. Now, transfer $\alpha $ or $\beta $ or $\gamma $ to the other side of the equation. Now, take tan to both sides of the equation and apply the trigonometric identities, given as
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \left( \pi -\theta \right)=-\tan \theta $
Complete step-by-step answer:
We are given $\alpha +\beta +\gamma =2\pi $ ………………………………(i)
As the given options has involvement of $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ it means we have to apply tan function to equation (i) with re-writing the terms (by dividing the whole equation by 2) as
$\dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\dfrac{2\pi }{2}=\pi $
$\Rightarrow \dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\pi -\dfrac{\gamma }{2}$ …………………………………(ii)
Now, we can take tan to both sides of the equation. So, we get the above equation as
$\tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\tan \left( \pi -\dfrac{\gamma }{2} \right)$ ………………………………………(iii)
Now, as we know the trigonometric identities of $\tan \left( x+y \right)$ and $\tan \left( \pi -\theta \right)$ are given as
$\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ …………………………………..(iv)
$\tan \left( \pi -\theta \right)=-\tan \theta $ ……………………………….(v)
Now, we can use the above two equations with the equation (iii). So, simplifying LHS of equation (iii) by equation (iv) and RHS of equation (iii) by equation (v) as
$\dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\tan \left( \dfrac{\gamma }{2} \right)$
$\Rightarrow \dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\dfrac{\tan \left( \dfrac{\gamma }{2} \right)}{1}$
On cross multiplying the above equations, we get
$\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}\left( 1-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2} \right)$
$\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}+\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
$\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
Hence, we get the above relation among $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ if $\alpha +\beta +\gamma =2\pi $ .
So, option (a) is the correct answer.
Note: One may go wrong if he/she directly applies tan to $\alpha +\beta +\gamma =2\pi $ to both sides. We will get a relation in $\tan \alpha ,\tan \beta ,\tan \gamma $ , which is not required. We need to get relation among $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ as per the given options. So, be careful with this step, otherwise we have to go longer to get the required answer. So, dividing the equation by 2 is the key point of the question.
One may get the answer from the given option by putting some value of $\alpha ,\beta ,\gamma $ whose sum is $2\pi $ . Example: - 60, 60, 240 or 90, 90, 180 or 120, 120, 120.
So, it can be another approach to get the answer.
$\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$
$\tan \left( \pi -\theta \right)=-\tan \theta $
Complete step-by-step answer:
We are given $\alpha +\beta +\gamma =2\pi $ ………………………………(i)
As the given options has involvement of $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ it means we have to apply tan function to equation (i) with re-writing the terms (by dividing the whole equation by 2) as
$\dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\dfrac{2\pi }{2}=\pi $
$\Rightarrow \dfrac{\alpha }{2}+\dfrac{\beta }{2}+\dfrac{\gamma }{2}=\pi -\dfrac{\gamma }{2}$ …………………………………(ii)
Now, we can take tan to both sides of the equation. So, we get the above equation as
$\tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\tan \left( \pi -\dfrac{\gamma }{2} \right)$ ………………………………………(iii)
Now, as we know the trigonometric identities of $\tan \left( x+y \right)$ and $\tan \left( \pi -\theta \right)$ are given as
$\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$ …………………………………..(iv)
$\tan \left( \pi -\theta \right)=-\tan \theta $ ……………………………….(v)
Now, we can use the above two equations with the equation (iii). So, simplifying LHS of equation (iii) by equation (iv) and RHS of equation (iii) by equation (v) as
$\dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\tan \left( \dfrac{\gamma }{2} \right)$
$\Rightarrow \dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}=-\dfrac{\tan \left( \dfrac{\gamma }{2} \right)}{1}$
On cross multiplying the above equations, we get
$\tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}\left( 1-\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2} \right)$
$\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}=-\tan \dfrac{\gamma }{2}+\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
$\Rightarrow \tan \dfrac{\alpha }{2}+\tan \dfrac{\beta }{2}+\tan \dfrac{\gamma }{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\beta }{2}\tan \dfrac{\gamma }{2}$
Hence, we get the above relation among $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ if $\alpha +\beta +\gamma =2\pi $ .
So, option (a) is the correct answer.
Note: One may go wrong if he/she directly applies tan to $\alpha +\beta +\gamma =2\pi $ to both sides. We will get a relation in $\tan \alpha ,\tan \beta ,\tan \gamma $ , which is not required. We need to get relation among $\tan \dfrac{\alpha }{2},\tan \dfrac{\beta }{2},\tan \dfrac{\gamma }{2}$ as per the given options. So, be careful with this step, otherwise we have to go longer to get the required answer. So, dividing the equation by 2 is the key point of the question.
One may get the answer from the given option by putting some value of $\alpha ,\beta ,\gamma $ whose sum is $2\pi $ . Example: - 60, 60, 240 or 90, 90, 180 or 120, 120, 120.
So, it can be another approach to get the answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

