
If $a\in \mathbb{R}$and is not a multiple of $\pi $, then show that the function $f\left( x \right)=\cot x$ is differentiable at $a$ and $f\left( a \right)=-{{\operatorname{cosec}}^{2}}a.$. In general, $f'\left( x \right)=-{{\operatorname{cosec}}^{2}}x$ for all real $x\ne n\pi ,n\in \mathbb{Z}.$
Answer
617.7k+ views
Hint: To check the differentiability of any function, we may find the derivative of that function. To find the derivative of the function $f\left( x \right)$, we will use the first principle of derivative and the functional relation which is given in the question.
Complete step-by-step answer:
In the question, we are given a function \[f\left( x \right)=\cot x\].
To test the differentiability of $f\left( x \right)$, we need to find the derivative of$f\left( x \right)$.
For this, we will use first principle from which we can find derivative $f'\left( x \right)$ of the function $f\left( x \right)$ by the formula,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
In this question, we are given a function $f\left( x \right)=\cot x$ and $f\left( x+h \right)=\cot \left( x+h \right)$
\[\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot \left( x+h \right)-\cot x}{h}..........\left( I \right)\]
In trigonometry, we have a formula, \[\cot \left( x+h \right)=\dfrac{\cot x\cot h-1}{\cot x+\cot h}\],
Substituting$\cot \left( x+h \right)$ from this formula in $\left( I \right)$, we get,
\[\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\cot x\cot h-1}{\cot x+\cot h}-\cot x}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot x\cot h-1-\cot x\left( \cot x+\cot h \right)}{h\left( \cot x+\cot h \right)} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot x\cot h-1-{{\cot }^{2}}x-\cot x\cot h}{h\left( \cot x+\cot h \right)} \\
& \Rightarrow f'\left( x \right)=(-1)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1+{{\cot }^{2}}x}{h\left( \cot x+\cot h \right)} \\
\end{align}\]
Since limit is with respect to $h$, we can take $1+{{\cot }^{2}}x$ out of the limit since $1+{{\cot }^{2}}x$ is a function of $x$.
$f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( \cot x+\cot h \right)}$
$\Rightarrow f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}.......\left( II \right)$
Solving limit part in $\left( II \right)$ i.e. $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}$,
The term $h\cot x=0$ for $h\to 0$ and the term $h\cot h=\dfrac{h}{\tan h}=1$ for $h\to 0$.
$\Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}=1$
Substituting this value of limit in equation$\left( II \right)$, we get,
$f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)$
Also, in trigonometry, we have a formula $1+{{\cot }^{2}}x={{\operatorname{cosec}}^{2}}x.$ So using this formula, we have,
$\Rightarrow f'\left( x \right)=-{{\operatorname{cosec}}^{2}}x.........(III)$
Drawing graph of $f'\left( x \right)$,
We can see that the graph of $f'\left( x \right)$ is discontinuous at multiples of $\pi $. So, \[\left\{ ......-3\pi ,-2\pi ,-\pi ,0,\pi ,2\pi ,3\pi ,..... \right\}\]
This means that $f\left( x \right)$ is differentiable for $x\in \mathbb{R}-\left\{ \text{multiple of }\pi \right\}$
Also from $\left( III \right)$, we have,
$\Rightarrow f'\left( x \right)=-{{\operatorname{cosec}}^{2}}x$
If we substitute $x=a$ in the above equation, we get,
$\Rightarrow f'\left( a \right)=-{{\operatorname{cosec}}^{2}}a$
Note: The question might have taken a lesser amount of time, if one had remembered the derivative of function $f\left( x \right)=\cot x$ instead of finding it using the first principle of derivative.
Complete step-by-step answer:
In the question, we are given a function \[f\left( x \right)=\cot x\].
To test the differentiability of $f\left( x \right)$, we need to find the derivative of$f\left( x \right)$.
For this, we will use first principle from which we can find derivative $f'\left( x \right)$ of the function $f\left( x \right)$ by the formula,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
In this question, we are given a function $f\left( x \right)=\cot x$ and $f\left( x+h \right)=\cot \left( x+h \right)$
\[\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot \left( x+h \right)-\cot x}{h}..........\left( I \right)\]
In trigonometry, we have a formula, \[\cot \left( x+h \right)=\dfrac{\cot x\cot h-1}{\cot x+\cot h}\],
Substituting$\cot \left( x+h \right)$ from this formula in $\left( I \right)$, we get,
\[\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\cot x\cot h-1}{\cot x+\cot h}-\cot x}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot x\cot h-1-\cot x\left( \cot x+\cot h \right)}{h\left( \cot x+\cot h \right)} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\cot x\cot h-1-{{\cot }^{2}}x-\cot x\cot h}{h\left( \cot x+\cot h \right)} \\
& \Rightarrow f'\left( x \right)=(-1)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1+{{\cot }^{2}}x}{h\left( \cot x+\cot h \right)} \\
\end{align}\]
Since limit is with respect to $h$, we can take $1+{{\cot }^{2}}x$ out of the limit since $1+{{\cot }^{2}}x$ is a function of $x$.
$f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\left( \cot x+\cot h \right)}$
$\Rightarrow f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}.......\left( II \right)$
Solving limit part in $\left( II \right)$ i.e. $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}$,
The term $h\cot x=0$ for $h\to 0$ and the term $h\cot h=\dfrac{h}{\tan h}=1$ for $h\to 0$.
$\Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\cot x+h\cot h}=1$
Substituting this value of limit in equation$\left( II \right)$, we get,
$f'\left( x \right)=-\left( 1+{{\cot }^{2}}x \right)$
Also, in trigonometry, we have a formula $1+{{\cot }^{2}}x={{\operatorname{cosec}}^{2}}x.$ So using this formula, we have,
$\Rightarrow f'\left( x \right)=-{{\operatorname{cosec}}^{2}}x.........(III)$
Drawing graph of $f'\left( x \right)$,
We can see that the graph of $f'\left( x \right)$ is discontinuous at multiples of $\pi $. So, \[\left\{ ......-3\pi ,-2\pi ,-\pi ,0,\pi ,2\pi ,3\pi ,..... \right\}\]
This means that $f\left( x \right)$ is differentiable for $x\in \mathbb{R}-\left\{ \text{multiple of }\pi \right\}$
Also from $\left( III \right)$, we have,
$\Rightarrow f'\left( x \right)=-{{\operatorname{cosec}}^{2}}x$
If we substitute $x=a$ in the above equation, we get,
$\Rightarrow f'\left( a \right)=-{{\operatorname{cosec}}^{2}}a$
Note: The question might have taken a lesser amount of time, if one had remembered the derivative of function $f\left( x \right)=\cot x$ instead of finding it using the first principle of derivative.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

