
If \[a=\dfrac{{z - 1}}{{z + 1}}\] is purely imaginary number (z is not equal to\[ - 1\]), then mod $z$ is ?
A. \[1\]
B. \[2\]
C. \[3\]
D. \[4\]
Answer
510.6k+ views
Hint: A complex number is of the form a +ib where a and b are real numbers and \[i\] is an imaginary number. Here, we will take \[z = x + iy\] and substitute the value of z. We will also use the formula \[(a - b)(a + b) = {a^2} - {b^2}\] and \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]. We know that \[{i^2} = - 1\]. For the given complex number is in the form \[z = x + iy\], then the conjugate of that number will be \[\overline z = x - iy\]. Here, if you take the conjugate number as a complex number and then solve it, you will still get the correct answer.
Complete step by step answer:
Let, \[z = x + iy\] and \[z \ne - 1\].
Give that, \[a = \dfrac{{z - 1}}{{z + 1}}\]
Substituting the value of z, we get,
\[a = \dfrac{{x + iy - 1}}{{x + iy + 1}}\]
Rearrange the above expression, we get,
\[a = \dfrac{{x - 1 + iy}}{{x + 1 + iy}}\]
Multiply to both the numerator and denominator with\[x + 1 - iy\], we get,
\[a= \dfrac{{x - 1 + iy}}{{x + 1 + iy}} \times \dfrac{{x + 1 - iy}}{{x + 1 - iy}} \\
\Rightarrow a= \dfrac{{(x - 1 + iy)(x + 1 - iy)}}{{(x + 1 + iy)(x + 1 - iy)}} \\ \]
\[\Rightarrow a= \dfrac{{(x - (1 - iy))(x + (1 - iy))}}{{((x + 1) + iy)((x + 1) - iy)}}\]
Applying this formula\[(a - b)(a + b) = {a^2} - {b^2}\], we get,
\[a = \dfrac{{{x^2} - {{(1 - iy)}^2}}}{{{{(x + 1)}^2} - {{(iy)}^2}}}\]
Applying this formula\[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we get,
Also, \[{(iy)^2} = {i^2}{y^2} = ( - 1){y^2} = - {y^2}\] \[(\because {i^2} = - 1)\]
\[ a= \dfrac{{{x^2} - ({1^2} + {{(iy)}^2} - 2(iy))}}{{{{(x + 1)}^2} - {{(iy)}^2}}}\]
\[\Rightarrow a = \dfrac{{{x^2} - (1 - {y^2} - 2yi)}}{{{{(x + 1)}^2} - ( - {y^2})}}\]
\[\Rightarrow a = \dfrac{{{x^2} - 1 + {y^2} + 2yi}}{{{{(x + 1)}^2} + {y^2}}}\]
\[\Rightarrow a = \dfrac{{{x^2} + {y^2} - 1}}{{{{(x + 1)}^2} + {y^2}}} + \dfrac{{2y}}{{{{(x + 1)}^2} + {y^2}}}i\]
Since it is given that \[\dfrac{{z - 1}}{{z + 1}}\] is purely imaginary, it means that the real part is zero.
\[\dfrac{{{x^2} + {y^2} - 1}}{{{{(x + 1)}^2} + {y^2}}} = 0\]
\[\Rightarrow {x^2} + {y^2} - 1 = 0 \\
\Rightarrow {x^2} + {y^2} = 1 \\ \]
We know that, \[\left| z \right| = \left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {y^2}} = \sqrt 1 \]
\[ \Rightarrow \left| z \right| = \pm 1\]
Since, it is given that, \[z \ne - 1\]
\[ \therefore \left| z \right| = 1\]
Note: Another method: Since it is given that\[\dfrac{{z - 1}}{{z + 1}}\]is purely imaginary,
\[\dfrac{{z - 1}}{{z + 1}} + (\overline {\dfrac{{z - 1}}{{z + 1}}} ) = 0\]
\[ \Rightarrow \dfrac{{z - 1}}{{z + 1}} + \dfrac{{\overline z - 1}}{{\overline z + 1}} = 0\]
\[ \Rightarrow \dfrac{{(z - 1)(\overline z + 1) + \overline {(z} - 1)(z + 1)}}{{(z + 1)(\overline z + 1)}} = 0\]
\[ \Rightarrow (z - 1)(\overline z + 1) + \overline {(z} - 1)(z + 1) = 0\]
\[\Rightarrow z\overline z + z - \overline z - 1 + \overline z z + \overline z - z - 1 = 0 \\
\Rightarrow 2z\overline z - 2 = 0 \\ \]
\[ \Rightarrow z\overline z - 1 = 0\]
\[ \Rightarrow {\left| z \right|^2} = 1\]
\[ \Rightarrow \left| z \right| = \pm 1\]
Since, it is given that, \[z \ne - 1\]
\[ \therefore \left| z \right| = 1\]
Hence, if \[\dfrac{{z - 1}}{{z + 1}}\] is purely imaginary number and\[z \ne - 1\] then \[\left| z \right| = 1\].
Complete step by step answer:
Let, \[z = x + iy\] and \[z \ne - 1\].
Give that, \[a = \dfrac{{z - 1}}{{z + 1}}\]
Substituting the value of z, we get,
\[a = \dfrac{{x + iy - 1}}{{x + iy + 1}}\]
Rearrange the above expression, we get,
\[a = \dfrac{{x - 1 + iy}}{{x + 1 + iy}}\]
Multiply to both the numerator and denominator with\[x + 1 - iy\], we get,
\[a= \dfrac{{x - 1 + iy}}{{x + 1 + iy}} \times \dfrac{{x + 1 - iy}}{{x + 1 - iy}} \\
\Rightarrow a= \dfrac{{(x - 1 + iy)(x + 1 - iy)}}{{(x + 1 + iy)(x + 1 - iy)}} \\ \]
\[\Rightarrow a= \dfrac{{(x - (1 - iy))(x + (1 - iy))}}{{((x + 1) + iy)((x + 1) - iy)}}\]
Applying this formula\[(a - b)(a + b) = {a^2} - {b^2}\], we get,
\[a = \dfrac{{{x^2} - {{(1 - iy)}^2}}}{{{{(x + 1)}^2} - {{(iy)}^2}}}\]
Applying this formula\[{(a - b)^2} = {a^2} + {b^2} - 2ab\], we get,
Also, \[{(iy)^2} = {i^2}{y^2} = ( - 1){y^2} = - {y^2}\] \[(\because {i^2} = - 1)\]
\[ a= \dfrac{{{x^2} - ({1^2} + {{(iy)}^2} - 2(iy))}}{{{{(x + 1)}^2} - {{(iy)}^2}}}\]
\[\Rightarrow a = \dfrac{{{x^2} - (1 - {y^2} - 2yi)}}{{{{(x + 1)}^2} - ( - {y^2})}}\]
\[\Rightarrow a = \dfrac{{{x^2} - 1 + {y^2} + 2yi}}{{{{(x + 1)}^2} + {y^2}}}\]
\[\Rightarrow a = \dfrac{{{x^2} + {y^2} - 1}}{{{{(x + 1)}^2} + {y^2}}} + \dfrac{{2y}}{{{{(x + 1)}^2} + {y^2}}}i\]
Since it is given that \[\dfrac{{z - 1}}{{z + 1}}\] is purely imaginary, it means that the real part is zero.
\[\dfrac{{{x^2} + {y^2} - 1}}{{{{(x + 1)}^2} + {y^2}}} = 0\]
\[\Rightarrow {x^2} + {y^2} - 1 = 0 \\
\Rightarrow {x^2} + {y^2} = 1 \\ \]
We know that, \[\left| z \right| = \left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {y^2}} = \sqrt 1 \]
\[ \Rightarrow \left| z \right| = \pm 1\]
Since, it is given that, \[z \ne - 1\]
\[ \therefore \left| z \right| = 1\]
Note: Another method: Since it is given that\[\dfrac{{z - 1}}{{z + 1}}\]is purely imaginary,
\[\dfrac{{z - 1}}{{z + 1}} + (\overline {\dfrac{{z - 1}}{{z + 1}}} ) = 0\]
\[ \Rightarrow \dfrac{{z - 1}}{{z + 1}} + \dfrac{{\overline z - 1}}{{\overline z + 1}} = 0\]
\[ \Rightarrow \dfrac{{(z - 1)(\overline z + 1) + \overline {(z} - 1)(z + 1)}}{{(z + 1)(\overline z + 1)}} = 0\]
\[ \Rightarrow (z - 1)(\overline z + 1) + \overline {(z} - 1)(z + 1) = 0\]
\[\Rightarrow z\overline z + z - \overline z - 1 + \overline z z + \overline z - z - 1 = 0 \\
\Rightarrow 2z\overline z - 2 = 0 \\ \]
\[ \Rightarrow z\overline z - 1 = 0\]
\[ \Rightarrow {\left| z \right|^2} = 1\]
\[ \Rightarrow \left| z \right| = \pm 1\]
Since, it is given that, \[z \ne - 1\]
\[ \therefore \left| z \right| = 1\]
Hence, if \[\dfrac{{z - 1}}{{z + 1}}\] is purely imaginary number and\[z \ne - 1\] then \[\left| z \right| = 1\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

