
If $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , then find the value of $ {{a}^{2}}+{{b}^{2}} $ ?
Answer
504.9k+ views
Hint: We start solving the problem by cubing the both sides of the given equation $ a-b=7 $ and make use of the result $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . We then make the necessary calculations to get the value of $ ab $ . We then make use of the result $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ and we substitute the values of $ a-b $ , $ {{a}^{3}}-{{b}^{3}} $ and $ ab $ in the result to get the required answer.
Complete step by step answer:
According to the problem, we are given that $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , and we need to find the value of $ {{a}^{2}}+{{b}^{2}} $ .
We have $ a-b=7 $ ---(1).
Let us apply cube on both sides of the equation (1).
So, we get $ {{\left( a-b \right)}^{3}}={{7}^{3}} $ ---(2).
We know that $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . Let us use this in equation (2).
So, we get $ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)=343 $ ---(3).
Let us substitute the results $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ in equation (3).
So, we get $ 133-3ab\left( 7 \right)=343 $ .
$ \Rightarrow -21ab=210 $ .
$ \Rightarrow ab=-10 $ ---(4).
Now, we know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ .
But we already have $ a-b=7 $ , $ {{a}^{3}}-{{b}^{3}}=133 $ and $ ab=-10 $ .
$ \Rightarrow 133=7\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow 19=\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ .
$ \therefore $ We have found the value of $ {{a}^{2}}+{{b}^{2}} $ as 29.
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the problem as shown below after finding the value of $ ab $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us substitute the results $ a-b=7 $ and $ ab=-10 $ .
$ \Rightarrow {{\left( 7 \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\left( -10 \right) $ .
$ \Rightarrow 49={{a}^{2}}+{{b}^{2}}+20 $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ . Similarly, we can expect problems to find the values of a, b, $ a+b $ and $ {{a}^{2}}-{{b}^{2}} $ .
Complete step by step answer:
According to the problem, we are given that $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , and we need to find the value of $ {{a}^{2}}+{{b}^{2}} $ .
We have $ a-b=7 $ ---(1).
Let us apply cube on both sides of the equation (1).
So, we get $ {{\left( a-b \right)}^{3}}={{7}^{3}} $ ---(2).
We know that $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . Let us use this in equation (2).
So, we get $ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)=343 $ ---(3).
Let us substitute the results $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ in equation (3).
So, we get $ 133-3ab\left( 7 \right)=343 $ .
$ \Rightarrow -21ab=210 $ .
$ \Rightarrow ab=-10 $ ---(4).
Now, we know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ .
But we already have $ a-b=7 $ , $ {{a}^{3}}-{{b}^{3}}=133 $ and $ ab=-10 $ .
$ \Rightarrow 133=7\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow 19=\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ .
$ \therefore $ We have found the value of $ {{a}^{2}}+{{b}^{2}} $ as 29.
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the problem as shown below after finding the value of $ ab $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us substitute the results $ a-b=7 $ and $ ab=-10 $ .
$ \Rightarrow {{\left( 7 \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\left( -10 \right) $ .
$ \Rightarrow 49={{a}^{2}}+{{b}^{2}}+20 $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ . Similarly, we can expect problems to find the values of a, b, $ a+b $ and $ {{a}^{2}}-{{b}^{2}} $ .
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

Which planet is known as the Watery Planet AJupiter class 10 social science CBSE
