
If $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , then find the value of $ {{a}^{2}}+{{b}^{2}} $ ?
Answer
568.5k+ views
Hint: We start solving the problem by cubing the both sides of the given equation $ a-b=7 $ and make use of the result $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . We then make the necessary calculations to get the value of $ ab $ . We then make use of the result $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ and we substitute the values of $ a-b $ , $ {{a}^{3}}-{{b}^{3}} $ and $ ab $ in the result to get the required answer.
Complete step by step answer:
According to the problem, we are given that $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , and we need to find the value of $ {{a}^{2}}+{{b}^{2}} $ .
We have $ a-b=7 $ ---(1).
Let us apply cube on both sides of the equation (1).
So, we get $ {{\left( a-b \right)}^{3}}={{7}^{3}} $ ---(2).
We know that $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . Let us use this in equation (2).
So, we get $ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)=343 $ ---(3).
Let us substitute the results $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ in equation (3).
So, we get $ 133-3ab\left( 7 \right)=343 $ .
$ \Rightarrow -21ab=210 $ .
$ \Rightarrow ab=-10 $ ---(4).
Now, we know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ .
But we already have $ a-b=7 $ , $ {{a}^{3}}-{{b}^{3}}=133 $ and $ ab=-10 $ .
$ \Rightarrow 133=7\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow 19=\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ .
$ \therefore $ We have found the value of $ {{a}^{2}}+{{b}^{2}} $ as 29.
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the problem as shown below after finding the value of $ ab $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us substitute the results $ a-b=7 $ and $ ab=-10 $ .
$ \Rightarrow {{\left( 7 \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\left( -10 \right) $ .
$ \Rightarrow 49={{a}^{2}}+{{b}^{2}}+20 $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ . Similarly, we can expect problems to find the values of a, b, $ a+b $ and $ {{a}^{2}}-{{b}^{2}} $ .
Complete step by step answer:
According to the problem, we are given that $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ , and we need to find the value of $ {{a}^{2}}+{{b}^{2}} $ .
We have $ a-b=7 $ ---(1).
Let us apply cube on both sides of the equation (1).
So, we get $ {{\left( a-b \right)}^{3}}={{7}^{3}} $ ---(2).
We know that $ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right) $ . Let us use this in equation (2).
So, we get $ {{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)=343 $ ---(3).
Let us substitute the results $ a-b=7 $ and $ {{a}^{3}}-{{b}^{3}}=133 $ in equation (3).
So, we get $ 133-3ab\left( 7 \right)=343 $ .
$ \Rightarrow -21ab=210 $ .
$ \Rightarrow ab=-10 $ ---(4).
Now, we know that $ {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right) $ .
But we already have $ a-b=7 $ , $ {{a}^{3}}-{{b}^{3}}=133 $ and $ ab=-10 $ .
$ \Rightarrow 133=7\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow 19=\left( {{a}^{2}}+{{b}^{2}}-10 \right) $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ .
$ \therefore $ We have found the value of $ {{a}^{2}}+{{b}^{2}} $ as 29.
Note:
We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the problem as shown below after finding the value of $ ab $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ . Let us substitute the results $ a-b=7 $ and $ ab=-10 $ .
$ \Rightarrow {{\left( 7 \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\left( -10 \right) $ .
$ \Rightarrow 49={{a}^{2}}+{{b}^{2}}+20 $ .
$ \Rightarrow {{a}^{2}}+{{b}^{2}}=29 $ . Similarly, we can expect problems to find the values of a, b, $ a+b $ and $ {{a}^{2}}-{{b}^{2}} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

