Courses
Courses for Kids
Free study material
Free LIVE classes
More

If ${a^2} + {b^2} + {c^2} = ab + bc + ca,$ then find the value of ${a^3} + {b^3}+{c^3}.$
A. $3{(abc)^3}$
B. 3abc
C. $3{a^2}{b^2}{c^2}$
D. None of these

Last updated date: 19th Mar 2023
Total views: 306k
Views today: 5.86k
Answer
VerifiedVerified
306k+ views
Hint: we are going to use the basic algebraic formula to solve the given question.

$$\because {a^3} + {b^3} + {c^3} - 3abc$$
$ = ({a^2} + {b^2} + {c^2} - ab - bc - ca)(a + b + c)$
$ = {a^2} + {b^2} + {c^2}$
$ = ab + bc + ca$ (given)
${a^3} + {b^3} + {c^3} - 3abc = 0 \times (a + b + c)$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0$
$\therefore {a^3} + {b^3} + {c^3} = 3abc$

Note: In algebra, we use alphabets like (x, y, z, a, b, c...) to substitute numbers in the equation to get the desired solution. Numbers are definite and their values are known. While alphabets are used to represent unknown numbers.