Courses
Courses for Kids
Free study material
Offline Centres
More
Last updated date: 07th Dec 2023
Total views: 384k
Views today: 9.84k
MVSAT Dec 2023

If ${a^2} + {b^2} + {c^2} = ab + bc + ca,$ then find the value of ${a^3} + {b^3}+{c^3}.$
A. $3{(abc)^3}$
B. 3abc
C. $3{a^2}{b^2}{c^2}$
D. None of these

Answer
VerifiedVerified
384k+ views
Hint: we are going to use the basic algebraic formula to solve the given question.

$$\because {a^3} + {b^3} + {c^3} - 3abc$$
$ = ({a^2} + {b^2} + {c^2} - ab - bc - ca)(a + b + c)$
$ = {a^2} + {b^2} + {c^2}$
$ = ab + bc + ca$ (given)
${a^3} + {b^3} + {c^3} - 3abc = 0 \times (a + b + c)$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0$
$\therefore {a^3} + {b^3} + {c^3} = 3abc$

Note: In algebra, we use alphabets like (x, y, z, a, b, c...) to substitute numbers in the equation to get the desired solution. Numbers are definite and their values are known. While alphabets are used to represent unknown numbers.