Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

If ${a^2} + {b^2} + {c^2} = ab + bc + ca,$ then find the value of ${a^3} + {b^3}+{c^3}.$
A. $3{(abc)^3}$
B. 3abc
C. $3{a^2}{b^2}{c^2}$
D. None of these

seo-qna
SearchIcon
Answer
VerifiedVerified
495.6k+ views
Hint: we are going to use the basic algebraic formula to solve the given question.

$$\because {a^3} + {b^3} + {c^3} - 3abc$$
$ = ({a^2} + {b^2} + {c^2} - ab - bc - ca)(a + b + c)$
$ = {a^2} + {b^2} + {c^2}$
$ = ab + bc + ca$ (given)
${a^3} + {b^3} + {c^3} - 3abc = 0 \times (a + b + c)$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = 0$
$\therefore {a^3} + {b^3} + {c^3} = 3abc$

Note: In algebra, we use alphabets like (x, y, z, a, b, c...) to substitute numbers in the equation to get the desired solution. Numbers are definite and their values are known. While alphabets are used to represent unknown numbers.