
If ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$ are the arithmetic means inserted between the numbers $a$ and $b$, then find the value of $\left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)$
Answer
574.5k+ views
Hint: In this problem we have an arithmetic progression ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$which is inserted between the numbers $a$ and $b$. Now the Arithmetic Progression will become $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$. In the above A.P we will calculate the value of common difference$\left( d \right)$ of the A.P by using the formula for ${{n}^{th}}$ term of A.P i.e. ${{a}_{n}}=a+\left( n-1 \right)d$, where $a$ is the first term of the A.P and the value ${{a}_{n}}=b$. so, we will calculate the both the required values from the series $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$ and then we will find the value of $b$. After calculating the value of $d$, we will find the values of ${{A}_{51}}$, ${{A}_{1}}$. From those values we will calculate the required value.
Complete step-by-step answer:
Given that, the series ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$ is inserted between the numbers $a$ and $b$, then the series becomes as $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$.
In the above A.P the first term is $a=a$, final term/ ${{m}^{th}}$ term is ${{a}_{m}}=b$.
We know that in A.P, the value of ${{n}^{th}}$ term is given by ${{a}_{n}}=a+\left( n-1 \right)d$, then
$\begin{align}
& {{a}_{m}}=a+\left( m-1 \right)d \\
& \Rightarrow b=a+\left( m-1 \right)d \\
& \Rightarrow b-a=\left( m-1 \right)d \\
& \Rightarrow d=\dfrac{b-a}{m+1} \\
\end{align}$
Here we have the last term ${{A}_{51}}$, then $m=51$
$\begin{align}
& \therefore d=\dfrac{b-a}{51+1} \\
& \Rightarrow d=\dfrac{b-a}{52} \\
\end{align}$
Now the values of ${{A}_{51}}$, ${{A}_{1}}$ are
${{A}_{51}}=a+\left( 52-1 \right)d$
Substituting the value of $d$, then we will get
$\begin{align}
& {{A}_{51}}=a+\left( 52-1 \right)d \\
& \Rightarrow {{A}_{51}}=a+51\left( \dfrac{b-a}{52} \right) \\
& \Rightarrow {{A}_{51}}=\dfrac{52a+51b-51a}{52} \\
& \Rightarrow {{A}_{51}}=\dfrac{a+51b}{52} \\
\end{align}$
Similarly, the value of ${{A}_{1}}$ is given by
${{A}_{1}}=a+\left( 2-1 \right)d$
Substituting the value of $d$in the above equation then we will get
$\begin{align}
& {{A}_{1}}=a+\left( \dfrac{b-a}{52} \right) \\
& \Rightarrow {{A}_{1}}=\dfrac{52a+b-a}{52} \\
& \Rightarrow {{A}_{1}}=\dfrac{b+51a}{52} \\
\end{align}$
$\therefore $The value of $\left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)$ is
$\begin{align}
& \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{b+\dfrac{a+51b}{52}}{b-\dfrac{a+51b}{52}}-\dfrac{\dfrac{b+51a}{52}+a}{\dfrac{b+51a}{52}-a} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{\dfrac{52b+a+51b}{52}}{\dfrac{52b-a-51b}{52}}-\dfrac{\dfrac{b+51a+52a}{52}}{\dfrac{b+51a-52a}{52}} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{a+103b}{b-a}-\dfrac{b+103a}{b-a} \\
\end{align}$
Taking $\dfrac{1}{\left( b-a \right)}$ as common, then we will get
$\begin{align}
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{1}{b-a}\left( a+103b-b-103a \right) \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{102b-102a}{b-a} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{102\left( b-a \right)}{\left( b-a \right)} \\
\end{align}$
Now cancelling the term $\left( b-a \right)$, then we will get
$\therefore \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=102$
Note: While calculating the values of ${{A}_{51}}$, ${{A}_{1}}$, students may consider the series ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$ and take ${{A}_{1}}$ as the first term, but it is actually second term in the series $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$ and the term ${{A}_{51}}$ is the ${{52}^{th}}$ term.
Complete step-by-step answer:
Given that, the series ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$ is inserted between the numbers $a$ and $b$, then the series becomes as $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$.
In the above A.P the first term is $a=a$, final term/ ${{m}^{th}}$ term is ${{a}_{m}}=b$.
We know that in A.P, the value of ${{n}^{th}}$ term is given by ${{a}_{n}}=a+\left( n-1 \right)d$, then
$\begin{align}
& {{a}_{m}}=a+\left( m-1 \right)d \\
& \Rightarrow b=a+\left( m-1 \right)d \\
& \Rightarrow b-a=\left( m-1 \right)d \\
& \Rightarrow d=\dfrac{b-a}{m+1} \\
\end{align}$
Here we have the last term ${{A}_{51}}$, then $m=51$
$\begin{align}
& \therefore d=\dfrac{b-a}{51+1} \\
& \Rightarrow d=\dfrac{b-a}{52} \\
\end{align}$
Now the values of ${{A}_{51}}$, ${{A}_{1}}$ are
${{A}_{51}}=a+\left( 52-1 \right)d$
Substituting the value of $d$, then we will get
$\begin{align}
& {{A}_{51}}=a+\left( 52-1 \right)d \\
& \Rightarrow {{A}_{51}}=a+51\left( \dfrac{b-a}{52} \right) \\
& \Rightarrow {{A}_{51}}=\dfrac{52a+51b-51a}{52} \\
& \Rightarrow {{A}_{51}}=\dfrac{a+51b}{52} \\
\end{align}$
Similarly, the value of ${{A}_{1}}$ is given by
${{A}_{1}}=a+\left( 2-1 \right)d$
Substituting the value of $d$in the above equation then we will get
$\begin{align}
& {{A}_{1}}=a+\left( \dfrac{b-a}{52} \right) \\
& \Rightarrow {{A}_{1}}=\dfrac{52a+b-a}{52} \\
& \Rightarrow {{A}_{1}}=\dfrac{b+51a}{52} \\
\end{align}$
$\therefore $The value of $\left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)$ is
$\begin{align}
& \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{b+\dfrac{a+51b}{52}}{b-\dfrac{a+51b}{52}}-\dfrac{\dfrac{b+51a}{52}+a}{\dfrac{b+51a}{52}-a} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{\dfrac{52b+a+51b}{52}}{\dfrac{52b-a-51b}{52}}-\dfrac{\dfrac{b+51a+52a}{52}}{\dfrac{b+51a-52a}{52}} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{a+103b}{b-a}-\dfrac{b+103a}{b-a} \\
\end{align}$
Taking $\dfrac{1}{\left( b-a \right)}$ as common, then we will get
$\begin{align}
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{1}{b-a}\left( a+103b-b-103a \right) \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{102b-102a}{b-a} \\
& \Rightarrow \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=\dfrac{102\left( b-a \right)}{\left( b-a \right)} \\
\end{align}$
Now cancelling the term $\left( b-a \right)$, then we will get
$\therefore \left( \dfrac{b+{{A}_{51}}}{b-{{A}_{51}}} \right)-\left( \dfrac{{{A}_{1}}+a}{{{A}_{1}}+a} \right)=102$
Note: While calculating the values of ${{A}_{51}}$, ${{A}_{1}}$, students may consider the series ${{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}}$ and take ${{A}_{1}}$ as the first term, but it is actually second term in the series $a,{{A}_{1}},{{A}_{2}},{{A}_{3}},...,{{A}_{31}},b$ and the term ${{A}_{51}}$ is the ${{52}^{th}}$ term.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

