
If \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P with \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\]. Then find the sum of the first 15 terms of the given A.P.
(a) 200
(b) 280
(c) 120
(d) 150
Answer
573.3k+ views
Hint: In this question, We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P with \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\]. Then there will be a common difference, say \[d\] between the consecutive terms of the A.P. Now the formulate to calculate the \[{{n}^{th}}\] terms of an A.P denotes by \[{{a}_{n}}\] is given by
\[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\]. Also the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\]. We will be using these formulas to calculate the sum of the first 15 terms of the given A.P.
Complete step by step answer:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P.
Also we are given that \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\].
Now since \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P there will be a common difference say \[d\] between the consecutive terms of the A.P and the formulate to calculate the \[{{n}^{th}}\] terms of an A.P denotes by \[{{a}_{n}}\] is given by \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\] .
Thus on substituting \[n=1\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{1}}={{a}_{1}}+\left( 1-1 \right)d \\
& ={{a}_{1}}
\end{align}\]
Now on substituting \[n=7\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{7}}={{a}_{1}}+\left( 7-1 \right)d \\
& ={{a}_{1}}+6d..........(1)
\end{align}\]
Again on substituting \[n=16\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{16}}={{a}_{1}}+\left( 16-1 \right)d \\
& ={{a}_{1}}+15d.............(2)
\end{align}\]
Now on substituting the values of equation (1) and equation (2) in the equation \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\], we will have
\[{{a}_{1}}+\left( {{a}_{1}}+6d \right)+\left( {{a}_{1}}+15d \right)=40\]
On adding the common terms , we get
\[3{{a}_{1}}+21d=40\]
Now by dividing the above expression by 3, we get
\[{{a}_{1}}+7d=\dfrac{40}{3}.............(3)\]
Since we know that the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] of an A.P is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\].
Therefore the sum of first 15 terms of the given A.P, that is the sum of \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{15}}\] is given by
\[{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{15}} \right)\]
Now on substituting \[n=15\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{15}}={{a}_{1}}+\left( 15-1 \right)d \\
& ={{a}_{1}}+14d..........(4)
\end{align}\]
On substituting the value of equation (4) in the equation \[{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{15}} \right)\], we will have
\[\begin{align}
& {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{1}}+14 \right) \\
& =\dfrac{15}{2}\left( 2{{a}_{1}}+14 \right) \\
& =\dfrac{15}{2}\times 2\left( {{a}_{1}}+7 \right) \\
& =15\left( {{a}_{1}}+7 \right)
\end{align}\]
Now on substituting the value of equation (3) in the above expression, we will have
\[\begin{align}
& {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=15\left( \dfrac{40}{3} \right) \\
& =5\times 40 \\
& =200
\end{align}\]
Therefore the sum of the first 15 terms of the given A.P is equal to 200.
So, the correct answer is “Option A”.
Note: In this problem, we have to carefully use the formulas for the sum of first \[n\] terms of an A.P and to find the \[{{n}^{th}}\] terms of an A.P in proper order. That is the formulate to calculate the \[{{n}^{th}}\] terms of an A.P denotes by \[{{a}_{n}}\] is given by \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\]. Also the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\].
\[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\]. Also the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\]. We will be using these formulas to calculate the sum of the first 15 terms of the given A.P.
Complete step by step answer:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P.
Also we are given that \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\].
Now since \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...\] are in A.P there will be a common difference say \[d\] between the consecutive terms of the A.P and the formulate to calculate the \[{{n}^{th}}\] terms of an A.P denotes by \[{{a}_{n}}\] is given by \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\] .
Thus on substituting \[n=1\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{1}}={{a}_{1}}+\left( 1-1 \right)d \\
& ={{a}_{1}}
\end{align}\]
Now on substituting \[n=7\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{7}}={{a}_{1}}+\left( 7-1 \right)d \\
& ={{a}_{1}}+6d..........(1)
\end{align}\]
Again on substituting \[n=16\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{16}}={{a}_{1}}+\left( 16-1 \right)d \\
& ={{a}_{1}}+15d.............(2)
\end{align}\]
Now on substituting the values of equation (1) and equation (2) in the equation \[{{a}_{1}}+{{a}_{7}}+{{a}_{16}}=40\], we will have
\[{{a}_{1}}+\left( {{a}_{1}}+6d \right)+\left( {{a}_{1}}+15d \right)=40\]
On adding the common terms , we get
\[3{{a}_{1}}+21d=40\]
Now by dividing the above expression by 3, we get
\[{{a}_{1}}+7d=\dfrac{40}{3}.............(3)\]
Since we know that the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] of an A.P is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\].
Therefore the sum of first 15 terms of the given A.P, that is the sum of \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{15}}\] is given by
\[{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{15}} \right)\]
Now on substituting \[n=15\] in \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\], we will have
\[\begin{align}
& {{a}_{15}}={{a}_{1}}+\left( 15-1 \right)d \\
& ={{a}_{1}}+14d..........(4)
\end{align}\]
On substituting the value of equation (4) in the equation \[{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{15}} \right)\], we will have
\[\begin{align}
& {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=\dfrac{15}{2}\left( {{a}_{1}}+{{a}_{1}}+14 \right) \\
& =\dfrac{15}{2}\left( 2{{a}_{1}}+14 \right) \\
& =\dfrac{15}{2}\times 2\left( {{a}_{1}}+7 \right) \\
& =15\left( {{a}_{1}}+7 \right)
\end{align}\]
Now on substituting the value of equation (3) in the above expression, we will have
\[\begin{align}
& {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{n}}=15\left( \dfrac{40}{3} \right) \\
& =5\times 40 \\
& =200
\end{align}\]
Therefore the sum of the first 15 terms of the given A.P is equal to 200.
So, the correct answer is “Option A”.
Note: In this problem, we have to carefully use the formulas for the sum of first \[n\] terms of an A.P and to find the \[{{n}^{th}}\] terms of an A.P in proper order. That is the formulate to calculate the \[{{n}^{th}}\] terms of an A.P denotes by \[{{a}_{n}}\] is given by \[{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d\]. Also the sum of first \[n\] terms say \[{{a}_{1}},{{a}_{2}},{{a}_{3}},...,{{a}_{n}}\] is given by \[\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right)\].
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

