
If \[a = {\log _2}3\], \[b = {\log _2}5\] and \[c = {\log _7}2\], then \[{\log _{140}}63\] in terms of \[a\], \[b\], \[c\] is
A.\[\dfrac{{2ac + 1}}{{2c + ab + 1}}\]
B.\[\dfrac{{2ac + 1}}{{2a + c + a}}\]
C.\[\dfrac{{2ac + 1}}{{2c + ab + a}}\]
D.None of these
Answer
510.9k+ views
Hint: First, we will start by writing the given logarithm function with same bases using\[{\log _a}b = \dfrac{1}{d}\] for \[{\log _b}a = d\]. Then we will convert the log function to \[{\log _2}\] term. We can do this by using the change-of-base formula, \[{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}}\] in the above equation and then use the logarithm property, \[{\log _b}ac = {\log _b}a + {\log _b}c\]and then the power rule of logarithm, \[{\log _b}\left( {{a^c}} \right) = c{\log _b}a\] to simplify the equations to find the required value.
Complete step-by-step answer:
We are given that \[a = {\log _2}3\], \[b = {\log _2}5\] and \[c = {\log _7}2\].
Using the logarithm property, \[{\log _a}b = \dfrac{1}{d}\] for \[{\log _b}a = d\] in \[c = {\log _7}2\], we get
\[ \Rightarrow {\log _2}7 = \dfrac{1}{c}\]
Let us take
\[{\log _{140}}63{\text{ ......eq.(1)}}\]
Rewriting the above equation, we get
\[ \Rightarrow {\log _{{2^2} \times 5 \times 7}}\left( {3 \times 3 \times 7} \right)\]
Let us now start by converting the \[{\log _{{2^2} \times 5 \times 7}}\] to \[{\log _2}\] term. We can do this by using the change-of-base formula, \[{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_2}\left( {3 \times 3 \times 7} \right)}}{{{{\log }_2}\left( {{2^2} \times 5 \times 7} \right)}}\]
Using the logarithm property, \[{\log _b}ac = {\log _b}a + {\log _b}c\] in the above expression, we get
\[
\Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}4 + {{\log }_2}5 + {{\log }_2}7}} \\
\Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}{2^2} + {{\log }_2}5 + {{\log }_2}7}} \\
\]
Let us now make use of the power rule of logarithm, \[{\log _b}\left( {{a^c}} \right) = c{\log _b}a\].
So, on applying this rule in the in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{2{{\log }_2}2 + {{\log }_2}5 + {{\log }_2}7}}\]
Substituting the values \[a = {\log _2}3\], \[b = {\log _2}5\] and \[\dfrac{1}{c} = {\log _2}7\] in the above equation, we get
\[
\Rightarrow \dfrac{{a + a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\
\Rightarrow \dfrac{{2a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\
\Rightarrow \dfrac{{\dfrac{{2ac + 1}}{c}}}{{\dfrac{{2c + b + 1}}{c}}} \\
\Rightarrow \dfrac{{2ac + 1}}{{2c + bc + 1}} \\
\]
Since none of the options match with the above values, option D is correct.
Note: The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Complete step-by-step answer:
We are given that \[a = {\log _2}3\], \[b = {\log _2}5\] and \[c = {\log _7}2\].
Using the logarithm property, \[{\log _a}b = \dfrac{1}{d}\] for \[{\log _b}a = d\] in \[c = {\log _7}2\], we get
\[ \Rightarrow {\log _2}7 = \dfrac{1}{c}\]
Let us take
\[{\log _{140}}63{\text{ ......eq.(1)}}\]
Rewriting the above equation, we get
\[ \Rightarrow {\log _{{2^2} \times 5 \times 7}}\left( {3 \times 3 \times 7} \right)\]
Let us now start by converting the \[{\log _{{2^2} \times 5 \times 7}}\] to \[{\log _2}\] term. We can do this by using the change-of-base formula, \[{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_2}\left( {3 \times 3 \times 7} \right)}}{{{{\log }_2}\left( {{2^2} \times 5 \times 7} \right)}}\]
Using the logarithm property, \[{\log _b}ac = {\log _b}a + {\log _b}c\] in the above expression, we get
\[
\Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}4 + {{\log }_2}5 + {{\log }_2}7}} \\
\Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}{2^2} + {{\log }_2}5 + {{\log }_2}7}} \\
\]
Let us now make use of the power rule of logarithm, \[{\log _b}\left( {{a^c}} \right) = c{\log _b}a\].
So, on applying this rule in the in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{2{{\log }_2}2 + {{\log }_2}5 + {{\log }_2}7}}\]
Substituting the values \[a = {\log _2}3\], \[b = {\log _2}5\] and \[\dfrac{1}{c} = {\log _2}7\] in the above equation, we get
\[
\Rightarrow \dfrac{{a + a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\
\Rightarrow \dfrac{{2a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\
\Rightarrow \dfrac{{\dfrac{{2ac + 1}}{c}}}{{\dfrac{{2c + b + 1}}{c}}} \\
\Rightarrow \dfrac{{2ac + 1}}{{2c + bc + 1}} \\
\]
Since none of the options match with the above values, option D is correct.
Note: The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
