
If $A = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$ then ${A^k} = \left[ {\begin{array}{*{20}{c}}
{1 + 2k}&{ - 4k} \\
k&{1 - 2k}
\end{array}} \right]$
Where k is any positive integer.
Answer
615.3k+ views
Hint-In this question, we use the concept of Arithmetic Progression. We know the nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$ . In this question we also use the concept of multiplication of two matrices.
Complete step-by-step answer:
Given, $A = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Now, we have to find the values ${A^2}$, ${A^3}$ and ${A^4}$ to identify the type of series followed by each element of the matrix.
${A^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
We use the concept of multiplication of two matrices.
$
{A^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right] \\
{A^2} = \left[ {\begin{array}{*{20}{c}}
{9 - 4}&{ - 12 + 4} \\
{3 - 1}&{ - 4 + 1}
\end{array}} \right] \\
{A^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] \\
$
Now, we find the value of ${A^3}$
$
{A^3} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \\
{A^3} = \left[ {\begin{array}{*{20}{c}}
{15 - 8}&{ - 20 + 8} \\
{6 - 3}&{ - 8 + 3}
\end{array}} \right] \\
{A^3} = \left[ {\begin{array}{*{20}{c}}
7&{ - 12} \\
3&{ - 5}
\end{array}} \right] \\
$
Now, we find the value of ${A^4}$
$
{A^4} = \left[ {\begin{array}{*{20}{c}}
7&{ - 12} \\
3&{ - 5}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \\
{A^4} = \left[ {\begin{array}{*{20}{c}}
{21 - 12}&{ - 28 + 12} \\
{9 - 5}&{ - 12 + 5}
\end{array}} \right] \\
{A^4} = \left[ {\begin{array}{*{20}{c}}
9&{ - 16} \\
4&{ - 7}
\end{array}} \right] \\
$
Now, we observe which type of series is followed by each element of the matrix.
First row and first column of A, ${A^2}$, ${A^3}$ and ${A^4}$
3, 5, 7, 9…………….
Above series is in A.P with common difference, d=2 and first term, a=3
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = 3 + \left( {k - 1} \right) \times 2 \\
\Rightarrow {a_k} = 3 + 2k - 2 \\
{a_k} = 1 + 2k,{\text{where }}k{\text{ is any positive integer}} \\
$
First row and second column of A, ${A^2}$, ${A^3}$ and ${A^4}$
-4, -8, -12, -16…………….
Above series is in A.P with common difference, d=-4 and first term, a=-4
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = - 4 + \left( {k - 1} \right) \times \left( { - 4} \right) \\
\Rightarrow {a_k} = - 4 - 4k + 4 \\
{a_k} = - 4k,{\text{where }}k{\text{ is any positive integer}} \\
$
Second row and first column of A, ${A^2}$, ${A^3}$ and ${A^4}$
1, 2, 3, 4…………….
Above series is in A.P with common difference, d=1 and first term, a=1
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = 1 + \left( {k - 1} \right) \times 1 \\
\Rightarrow {a_k} = 1 + k - 1 \\
{a_k} = k,{\text{where }}k{\text{ is any positive integer}} \\
$
Second row and Second column of A, ${A^2}$, ${A^3}$ and ${A^4}$
-1, -3, -5, -7…………….
Above series is in A.P with common difference, d=-2 and first term, a=-1
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = - 1 + \left( {k - 1} \right) \times \left( { - 2} \right) \\
\Rightarrow {a_k} = - 1 - 2k + 2 \\
{a_k} = 1 - 2k,{\text{where }}k{\text{ is any positive integer}} \\
$
So, it’s proved ${A^k} = \left[ {\begin{array}{*{20}{c}}
{1 + 2k}&{ - 4k} \\
k&{1 - 2k}
\end{array}} \right],{\text{where }}k{\text{ is any positive integer}}$
Note-In such types of problems we use the concept of series first we have to find the value ${A^2}$, ${A^3}$ and ${A^4}$ and then observe which type of series followed by each element of matrices. If it is arithmetic progression then we use the nth term of an A.P. So, we will get the required answer.
Complete step-by-step answer:
Given, $A = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
Now, we have to find the values ${A^2}$, ${A^3}$ and ${A^4}$ to identify the type of series followed by each element of the matrix.
${A^2} = \left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right]$
We use the concept of multiplication of two matrices.
$
{A^2} = \left[ {\begin{array}{*{20}{c}}
{3 \times 3 + \left( { - 4} \right) \times 1}&{3 \times \left( { - 4} \right) + \left( { - 4} \right) \times \left( { - 1} \right)} \\
{1 \times 3 + \left( { - 1} \right) \times 1}&{1 \times \left( { - 4} \right) + \left( { - 1} \right) \times \left( { - 1} \right)}
\end{array}} \right] \\
{A^2} = \left[ {\begin{array}{*{20}{c}}
{9 - 4}&{ - 12 + 4} \\
{3 - 1}&{ - 4 + 1}
\end{array}} \right] \\
{A^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right] \\
$
Now, we find the value of ${A^3}$
$
{A^3} = \left[ {\begin{array}{*{20}{c}}
5&{ - 8} \\
2&{ - 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \\
{A^3} = \left[ {\begin{array}{*{20}{c}}
{15 - 8}&{ - 20 + 8} \\
{6 - 3}&{ - 8 + 3}
\end{array}} \right] \\
{A^3} = \left[ {\begin{array}{*{20}{c}}
7&{ - 12} \\
3&{ - 5}
\end{array}} \right] \\
$
Now, we find the value of ${A^4}$
$
{A^4} = \left[ {\begin{array}{*{20}{c}}
7&{ - 12} \\
3&{ - 5}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 1}
\end{array}} \right] \\
{A^4} = \left[ {\begin{array}{*{20}{c}}
{21 - 12}&{ - 28 + 12} \\
{9 - 5}&{ - 12 + 5}
\end{array}} \right] \\
{A^4} = \left[ {\begin{array}{*{20}{c}}
9&{ - 16} \\
4&{ - 7}
\end{array}} \right] \\
$
Now, we observe which type of series is followed by each element of the matrix.
First row and first column of A, ${A^2}$, ${A^3}$ and ${A^4}$
3, 5, 7, 9…………….
Above series is in A.P with common difference, d=2 and first term, a=3
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = 3 + \left( {k - 1} \right) \times 2 \\
\Rightarrow {a_k} = 3 + 2k - 2 \\
{a_k} = 1 + 2k,{\text{where }}k{\text{ is any positive integer}} \\
$
First row and second column of A, ${A^2}$, ${A^3}$ and ${A^4}$
-4, -8, -12, -16…………….
Above series is in A.P with common difference, d=-4 and first term, a=-4
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = - 4 + \left( {k - 1} \right) \times \left( { - 4} \right) \\
\Rightarrow {a_k} = - 4 - 4k + 4 \\
{a_k} = - 4k,{\text{where }}k{\text{ is any positive integer}} \\
$
Second row and first column of A, ${A^2}$, ${A^3}$ and ${A^4}$
1, 2, 3, 4…………….
Above series is in A.P with common difference, d=1 and first term, a=1
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = 1 + \left( {k - 1} \right) \times 1 \\
\Rightarrow {a_k} = 1 + k - 1 \\
{a_k} = k,{\text{where }}k{\text{ is any positive integer}} \\
$
Second row and Second column of A, ${A^2}$, ${A^3}$ and ${A^4}$
-1, -3, -5, -7…………….
Above series is in A.P with common difference, d=-2 and first term, a=-1
Now, nth term of an A.P. is ${a_n} = a + \left( {n - 1} \right)d$
$
\Rightarrow {a_k} = - 1 + \left( {k - 1} \right) \times \left( { - 2} \right) \\
\Rightarrow {a_k} = - 1 - 2k + 2 \\
{a_k} = 1 - 2k,{\text{where }}k{\text{ is any positive integer}} \\
$
So, it’s proved ${A^k} = \left[ {\begin{array}{*{20}{c}}
{1 + 2k}&{ - 4k} \\
k&{1 - 2k}
\end{array}} \right],{\text{where }}k{\text{ is any positive integer}}$
Note-In such types of problems we use the concept of series first we have to find the value ${A^2}$, ${A^3}$ and ${A^4}$ and then observe which type of series followed by each element of matrices. If it is arithmetic progression then we use the nth term of an A.P. So, we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

