
If $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$, verify that ${\left( {AB} \right)^T} = {B^T}{A^T}$.
Answer
526.8k+ views
Hint: First we need to find the product of the 2 matrices that are provided as A and B. Then by taking the transpose of the produce we will get ${\left( {AB} \right)^T}$. Again we can find the individual transpose matrices of A and B and find their product. We will see that the result is the same in both cases.
Formula used:
In this formula we will be using the following formula,
If $A = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
then $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
that is, $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$
Complete step by step answer:
We need to first calculate the product of the 2 matrices A and B
So we use the formula $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$ to calculate the product.
In the question we are given $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$. So substituting the values we get the matrix product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times - 2}&{ - 1 \times - 1}&{ - 1 \times - 4} \\
{2 \times - 2}&{2 \times - 1}&{2 \times - 4} \\
{3 \times - 2}&{3 \times - 1}&{3 \times - 4}
\end{array}} \right]\]
So on calculating we get the product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
2&1&4 \\
{ - 4}&{ - 2}&{ - 8} \\
{ - 6}&{ - 3}&{ - 12}
\end{array}} \right]\]
We can get the transpose of this matrix as,
\[{\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]. Let us name this as equation1.
Now from A we get ${A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$
and similarly from B we get, ${B^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]$
Therefore, the product of the transpose of the A matrix with the transpose of the B matrix gives us,
${B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$Again from the same formula for the product of matrices, we get
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times - 1}&{ - 2 \times 2}&{ - 2 \times 3} \\
{ - 1 \times - 1}&{ - 1 \times 2}&{ - 1 \times 3} \\
{ - 4 \times - 1}&{ - 4 \times 2}&{ - 4 \times 3}
\end{array}} \right]\]
So on doing the multiplications we get,
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]
Let us consider this as equation 2.
So on comparing the values in equation 1 and 2 we can see that the values in the RHS of both the equations are the same. Hence we get,
${\left( {AB} \right)^T} = {B^T}{A^T}$
Note:
The transpose of a matrix is obtained by interchanging the rows and the columns of a matrix. In other words, we can denote $A = {\left[ {{a_{ij}}} \right]_{m \times n}}$ matrix in the form of $A = {\left[ {{a_{ji}}} \right]_{n \times m}}$.
Formula used:
In this formula we will be using the following formula,
If $A = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
then $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
that is, $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$
Complete step by step answer:
We need to first calculate the product of the 2 matrices A and B
So we use the formula $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$ to calculate the product.
In the question we are given $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$. So substituting the values we get the matrix product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times - 2}&{ - 1 \times - 1}&{ - 1 \times - 4} \\
{2 \times - 2}&{2 \times - 1}&{2 \times - 4} \\
{3 \times - 2}&{3 \times - 1}&{3 \times - 4}
\end{array}} \right]\]
So on calculating we get the product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
2&1&4 \\
{ - 4}&{ - 2}&{ - 8} \\
{ - 6}&{ - 3}&{ - 12}
\end{array}} \right]\]
We can get the transpose of this matrix as,
\[{\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]. Let us name this as equation1.
Now from A we get ${A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$
and similarly from B we get, ${B^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]$
Therefore, the product of the transpose of the A matrix with the transpose of the B matrix gives us,
${B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$Again from the same formula for the product of matrices, we get
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times - 1}&{ - 2 \times 2}&{ - 2 \times 3} \\
{ - 1 \times - 1}&{ - 1 \times 2}&{ - 1 \times 3} \\
{ - 4 \times - 1}&{ - 4 \times 2}&{ - 4 \times 3}
\end{array}} \right]\]
So on doing the multiplications we get,
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]
Let us consider this as equation 2.
So on comparing the values in equation 1 and 2 we can see that the values in the RHS of both the equations are the same. Hence we get,
${\left( {AB} \right)^T} = {B^T}{A^T}$
Note:
The transpose of a matrix is obtained by interchanging the rows and the columns of a matrix. In other words, we can denote $A = {\left[ {{a_{ij}}} \right]_{m \times n}}$ matrix in the form of $A = {\left[ {{a_{ji}}} \right]_{n \times m}}$.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

