
If $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$, verify that ${\left( {AB} \right)^T} = {B^T}{A^T}$.
Answer
543.6k+ views
Hint: First we need to find the product of the 2 matrices that are provided as A and B. Then by taking the transpose of the produce we will get ${\left( {AB} \right)^T}$. Again we can find the individual transpose matrices of A and B and find their product. We will see that the result is the same in both cases.
Formula used:
In this formula we will be using the following formula,
If $A = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
then $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
that is, $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$
Complete step by step answer:
We need to first calculate the product of the 2 matrices A and B
So we use the formula $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$ to calculate the product.
In the question we are given $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$. So substituting the values we get the matrix product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times - 2}&{ - 1 \times - 1}&{ - 1 \times - 4} \\
{2 \times - 2}&{2 \times - 1}&{2 \times - 4} \\
{3 \times - 2}&{3 \times - 1}&{3 \times - 4}
\end{array}} \right]\]
So on calculating we get the product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
2&1&4 \\
{ - 4}&{ - 2}&{ - 8} \\
{ - 6}&{ - 3}&{ - 12}
\end{array}} \right]\]
We can get the transpose of this matrix as,
\[{\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]. Let us name this as equation1.
Now from A we get ${A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$
and similarly from B we get, ${B^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]$
Therefore, the product of the transpose of the A matrix with the transpose of the B matrix gives us,
${B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$Again from the same formula for the product of matrices, we get
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times - 1}&{ - 2 \times 2}&{ - 2 \times 3} \\
{ - 1 \times - 1}&{ - 1 \times 2}&{ - 1 \times 3} \\
{ - 4 \times - 1}&{ - 4 \times 2}&{ - 4 \times 3}
\end{array}} \right]\]
So on doing the multiplications we get,
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]
Let us consider this as equation 2.
So on comparing the values in equation 1 and 2 we can see that the values in the RHS of both the equations are the same. Hence we get,
${\left( {AB} \right)^T} = {B^T}{A^T}$
Note:
The transpose of a matrix is obtained by interchanging the rows and the columns of a matrix. In other words, we can denote $A = {\left[ {{a_{ij}}} \right]_{m \times n}}$ matrix in the form of $A = {\left[ {{a_{ji}}} \right]_{n \times m}}$.
Formula used:
In this formula we will be using the following formula,
If $A = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
then $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}} \\
{{A_2}} \\
{{A_3}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{B_1}}&{{B_2}}&{{B_3}}
\end{array}} \right]$
that is, $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$
Complete step by step answer:
We need to first calculate the product of the 2 matrices A and B
So we use the formula $AB = \left[ {\begin{array}{*{20}{c}}
{{A_1}{B_1}}&{{A_1}{B_2}}&{{A_1}{B_3}} \\
{{A_2}{B_1}}&{{A_2}{B_2}}&{{A_2}{B_3}} \\
{{A_3}{B_1}}&{{A_3}{B_2}}&{{A_3}{B_3}}
\end{array}} \right]$ to calculate the product.
In the question we are given $A = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
2 \\
3
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 1}&{ - 4}
\end{array}} \right]$. So substituting the values we get the matrix product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times - 2}&{ - 1 \times - 1}&{ - 1 \times - 4} \\
{2 \times - 2}&{2 \times - 1}&{2 \times - 4} \\
{3 \times - 2}&{3 \times - 1}&{3 \times - 4}
\end{array}} \right]\]
So on calculating we get the product as,
\[AB = \left[ {\begin{array}{*{20}{c}}
2&1&4 \\
{ - 4}&{ - 2}&{ - 8} \\
{ - 6}&{ - 3}&{ - 12}
\end{array}} \right]\]
We can get the transpose of this matrix as,
\[{\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]. Let us name this as equation1.
Now from A we get ${A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$
and similarly from B we get, ${B^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]$
Therefore, the product of the transpose of the A matrix with the transpose of the B matrix gives us,
${B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
{ - 1} \\
{ - 4}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&2&3
\end{array}} \right]$Again from the same formula for the product of matrices, we get
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times - 1}&{ - 2 \times 2}&{ - 2 \times 3} \\
{ - 1 \times - 1}&{ - 1 \times 2}&{ - 1 \times 3} \\
{ - 4 \times - 1}&{ - 4 \times 2}&{ - 4 \times 3}
\end{array}} \right]\]
So on doing the multiplications we get,
\[{B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
2&{ - 4}&{ - 6} \\
1&{ - 2}&{ - 3} \\
4&{ - 8}&{ - 12}
\end{array}} \right]\]
Let us consider this as equation 2.
So on comparing the values in equation 1 and 2 we can see that the values in the RHS of both the equations are the same. Hence we get,
${\left( {AB} \right)^T} = {B^T}{A^T}$
Note:
The transpose of a matrix is obtained by interchanging the rows and the columns of a matrix. In other words, we can denote $A = {\left[ {{a_{ij}}} \right]_{m \times n}}$ matrix in the form of $A = {\left[ {{a_{ji}}} \right]_{n \times m}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

