Answer
Verified
439.5k+ views
Hint: In the diagonal matrix, all the elements of the matrix are zero except the diagonal running from the upper left to the lower left.
Let the elements of diagonal be \[{{a}_{ii}}\] where i = 1,2,3…. n
Substitute the values in the diagonal and solve for \[{{A}^{2}}=A\]. Simplify the result to get a relation between the result and the diagonal elements and hence calculate the number of values for matrix A.
Complete step-by-step answer:
Consider a diagonal matrix A of order n:
\[A=\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\]
where $ \left( {{a}_{11}},{{a}_{22}},.....,{{a}_{nn}} \right) $ are elements of diagonal.
So,
\[{{A}^{2}}=\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
{{\left( {{a}_{11}} \right)}^{2}} & 0 & . & . \\
0 & {{\left( {{a}_{22}} \right)}^{2}} & . & . \\
. & . & . & . \\
0 & . & . & {{\left( {{a}_{nn}} \right)}^{2}} \\
\end{matrix} \right]......(1)\]
Hence, \[{{A}^{2}}={{\left( \text{Diagonal element} \right)}^{2}}\]
i.e. \[{{A}^{2}}=\left[ {{\left( {{a}_{11}} \right)}^{2}},{{\left( {{a}_{22}} \right)}^{2}},......,{{\left( {{a}_{nn}} \right)}^{2}} \right]......(2)\]
Since it is given in the question that \[{{A}^{2}}=A\]
Therefore, \[\left[ {{\left( {{a}_{11}} \right)}^{2}},{{\left( {{a}_{22}} \right)}^{2}},......,{{\left( {{a}_{nn}} \right)}^{2}} \right]=\left[ {{a}_{11}},{{a}_{22}},......{{a}_{nn}} \right]......(3)\]
We can write equation (3) as:
\[{{\left( {{a}_{11}} \right)}^{2}}={{a}_{11}};{{\left( {{a}_{22}} \right)}^{2}}={{a}_{22}};......;{{\left( {{a}_{nn}} \right)}^{2}}={{a}_{nn}}......(4)\]
Simplifying the equation (4), we get:
\[{{\left( {{a}_{ii}} \right)}^{2}}={{a}_{ii}}\], for all elements i = 1,2,3……n
Now we can write equation (4) as:
\[{{\left( {{a}_{ii}} \right)}^{2}}-{{a}_{ii}}=0\]
\[\Rightarrow {{a}_{ii}}\left( {{a}_{ii}}-1 \right)=0\]
Therefore, we get:
\[{{a}_{ii}}=0\text{ or }{{a}_{ii}}=1\], for all elements i = 1,2,3……n
For each element of diagonal, we have two choices, i.e. 0 or 1
Therefore, total values of matrix A are: \[2\times 2\times 2\times .......n\text{ }times\]
i.e. \[{{2}^{n}}\]
So, the correct answer is “Option C”.
Note: Since the diagonal matrix contains zero value of most of its elements, don’t choose option (a) directly.
Also, as given in the question: \[{{A}^{2}}=A\], there may be a possibility of getting A = 1, which neglects the other choice. So be careful with these two options given.
Let the elements of diagonal be \[{{a}_{ii}}\] where i = 1,2,3…. n
Substitute the values in the diagonal and solve for \[{{A}^{2}}=A\]. Simplify the result to get a relation between the result and the diagonal elements and hence calculate the number of values for matrix A.
Complete step-by-step answer:
Consider a diagonal matrix A of order n:
\[A=\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\]
where $ \left( {{a}_{11}},{{a}_{22}},.....,{{a}_{nn}} \right) $ are elements of diagonal.
So,
\[{{A}^{2}}=\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}_{11}} & 0 & . & . \\
0 & {{a}_{22}} & . & . \\
. & . & . & . \\
0 & . & . & {{a}_{nn}} \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
{{\left( {{a}_{11}} \right)}^{2}} & 0 & . & . \\
0 & {{\left( {{a}_{22}} \right)}^{2}} & . & . \\
. & . & . & . \\
0 & . & . & {{\left( {{a}_{nn}} \right)}^{2}} \\
\end{matrix} \right]......(1)\]
Hence, \[{{A}^{2}}={{\left( \text{Diagonal element} \right)}^{2}}\]
i.e. \[{{A}^{2}}=\left[ {{\left( {{a}_{11}} \right)}^{2}},{{\left( {{a}_{22}} \right)}^{2}},......,{{\left( {{a}_{nn}} \right)}^{2}} \right]......(2)\]
Since it is given in the question that \[{{A}^{2}}=A\]
Therefore, \[\left[ {{\left( {{a}_{11}} \right)}^{2}},{{\left( {{a}_{22}} \right)}^{2}},......,{{\left( {{a}_{nn}} \right)}^{2}} \right]=\left[ {{a}_{11}},{{a}_{22}},......{{a}_{nn}} \right]......(3)\]
We can write equation (3) as:
\[{{\left( {{a}_{11}} \right)}^{2}}={{a}_{11}};{{\left( {{a}_{22}} \right)}^{2}}={{a}_{22}};......;{{\left( {{a}_{nn}} \right)}^{2}}={{a}_{nn}}......(4)\]
Simplifying the equation (4), we get:
\[{{\left( {{a}_{ii}} \right)}^{2}}={{a}_{ii}}\], for all elements i = 1,2,3……n
Now we can write equation (4) as:
\[{{\left( {{a}_{ii}} \right)}^{2}}-{{a}_{ii}}=0\]
\[\Rightarrow {{a}_{ii}}\left( {{a}_{ii}}-1 \right)=0\]
Therefore, we get:
\[{{a}_{ii}}=0\text{ or }{{a}_{ii}}=1\], for all elements i = 1,2,3……n
For each element of diagonal, we have two choices, i.e. 0 or 1
Therefore, total values of matrix A are: \[2\times 2\times 2\times .......n\text{ }times\]
i.e. \[{{2}^{n}}\]
So, the correct answer is “Option C”.
Note: Since the diagonal matrix contains zero value of most of its elements, don’t choose option (a) directly.
Also, as given in the question: \[{{A}^{2}}=A\], there may be a possibility of getting A = 1, which neglects the other choice. So be careful with these two options given.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE