
If a function f(x) =$x^{2}-2x$, find f(A), where $$A=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$.
Answer
606k+ views
Hint: In this question it is given that if $f\left( x\right) =x^{2}-2x$, we have to find f(A),
where $$A=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$.
So to find the solution we first need to find $2\times A$ and $A^{2}$=$A\times A$, so for this we need to know the multiplication method for two matrices.
If $$A=\left[ a_{ij}\right]_{m\times n} $$ be matrix of order $m\times n$ and $$B=\left[ b_{ij}\right]_{n\times p} $$ of order $n\times p$ , then,
$$A\times B=\left[ c_{ij}\right]_{m\times p} $$, where $$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots +a_{in}b_{nj}$$.
Also here $a_{ij}$ defines the element of $i^{th}$ and $j^{th}$ columns.
Complete step-by-step solution:
Given,
$$A=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
Therefore,
$A^{2}$
$=A\times A$
$$=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix} \times \begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
$$=\begin{bmatrix}0\times 0+1\times 4+2\times 0&0\times 1+1\times 5+2\times 2&0\times 2+1\times 0+2\times 3\\ 4\times 0+5\times 4+0\times 0&4\times 1+5\times 5+0\times 2&4\times 2+5\times 0+0\times 3\\ 0\times 0+2\times 4+3\times 0&0\times 1+2\times 5+3\times 2&0\times 2+2\times 0+3\times 3\end{bmatrix}$$
$$=\begin{bmatrix}4&9&6\\ 20&29&8\\ 8&16&9\end{bmatrix}$$
Now,
2A$$=2\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
$$=\begin{bmatrix}2\times 0&2\times 1&2\times 2\\ 2\times 4&2\times 5&2\times 0\\ 2\times 0&2\times 2&2\times 3\end{bmatrix}$$
$$=\begin{bmatrix}0&2&4\\ 8&10&0\\ 0&4&6\end{bmatrix}$$
Now,
$f\left(A\right) =A^{2}-2A$
$$=\begin{bmatrix}4&9&6\\ 20&29&8\\ 8&16&9\end{bmatrix} -\begin{bmatrix}0&2&4\\ 8&10&0\\ 0&4&6\end{bmatrix}$$
$$=\begin{bmatrix}4-0&9-2&6-4\\ 20-8&29-10&8-0\\ 8-0&16-4&9-6\end{bmatrix}$$
$$=\begin{bmatrix}4&7&2\\ 12&19&8\\ 8&12&3\end{bmatrix}$$
Which is our required solution.
Note: while performing addition and subtraction in two matrices, the operation takes place in its corresponding elements and when you multiply a constant term with a matrix this will multiply with each and every element of a matrix.
where $$A=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$.
So to find the solution we first need to find $2\times A$ and $A^{2}$=$A\times A$, so for this we need to know the multiplication method for two matrices.
If $$A=\left[ a_{ij}\right]_{m\times n} $$ be matrix of order $m\times n$ and $$B=\left[ b_{ij}\right]_{n\times p} $$ of order $n\times p$ , then,
$$A\times B=\left[ c_{ij}\right]_{m\times p} $$, where $$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots +a_{in}b_{nj}$$.
Also here $a_{ij}$ defines the element of $i^{th}$ and $j^{th}$ columns.
Complete step-by-step solution:
Given,
$$A=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
Therefore,
$A^{2}$
$=A\times A$
$$=\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix} \times \begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
$$=\begin{bmatrix}0\times 0+1\times 4+2\times 0&0\times 1+1\times 5+2\times 2&0\times 2+1\times 0+2\times 3\\ 4\times 0+5\times 4+0\times 0&4\times 1+5\times 5+0\times 2&4\times 2+5\times 0+0\times 3\\ 0\times 0+2\times 4+3\times 0&0\times 1+2\times 5+3\times 2&0\times 2+2\times 0+3\times 3\end{bmatrix}$$
$$=\begin{bmatrix}4&9&6\\ 20&29&8\\ 8&16&9\end{bmatrix}$$
Now,
2A$$=2\begin{bmatrix}0&1&2\\ 4&5&0\\ 0&2&3\end{bmatrix}$$
$$=\begin{bmatrix}2\times 0&2\times 1&2\times 2\\ 2\times 4&2\times 5&2\times 0\\ 2\times 0&2\times 2&2\times 3\end{bmatrix}$$
$$=\begin{bmatrix}0&2&4\\ 8&10&0\\ 0&4&6\end{bmatrix}$$
Now,
$f\left(A\right) =A^{2}-2A$
$$=\begin{bmatrix}4&9&6\\ 20&29&8\\ 8&16&9\end{bmatrix} -\begin{bmatrix}0&2&4\\ 8&10&0\\ 0&4&6\end{bmatrix}$$
$$=\begin{bmatrix}4-0&9-2&6-4\\ 20-8&29-10&8-0\\ 8-0&16-4&9-6\end{bmatrix}$$
$$=\begin{bmatrix}4&7&2\\ 12&19&8\\ 8&12&3\end{bmatrix}$$
Which is our required solution.
Note: while performing addition and subtraction in two matrices, the operation takes place in its corresponding elements and when you multiply a constant term with a matrix this will multiply with each and every element of a matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

