
If a cycle wheel of radius 4m completes one revolution in 2 seconds. Then the acceleration of the cycle is,
A) ${\text{4}}{{\pi }^{\text{2}}}{\text{m/}}{{\text{s}}^{\text{2}}}$.
B) ${\text{2}}{{\pi }^{\text{2}}}{\text{m/}}{{\text{s}}^{\text{2}}}$.
C) ${{\pi }^{\text{2}}}{\text{m/}}{{\text{s}}^{\text{2}}}$.
D) ${\text{4m/}}{{\text{s}}^{\text{2}}}$
Answer
572.7k+ views
Hint
Use the formula ${a_c} = {\omega ^2}R$ to calculate the acceleration and also replace the value of angular frequency in terms of Time period by using the formula $\omega = \dfrac{{2\pi }}{T}$ and solve for acceleration to get the answer.
Complete step by step answer
It is given that the time period of the cycle wheel = 2 second.
Also given that the radius of the cycle wheel is = 4 m.
We know that the centripetal acceleration of the cycle is given by the formula,
${a_c} = {\omega ^2}R$ where,
$\omega $ is the angular frequency of the cycle wheel.
R is the radius of the cycle wheel.
We know that the angular frequency is related to time period by the formula,
$\omega = \dfrac{{2\pi }}{T}$
So on putting the value of angular frequency in the equation of centripetal acceleration we have,
$\Rightarrow {a_c} = {(\dfrac{{2\pi }}{T})^2} \times 4 $
$\Rightarrow {a_c} = 4{\pi ^2} \times \dfrac{4}{4} $
$\Rightarrow {a_c} = 4{\pi ^2}{\text{m/}}{{\text{s}}^{\text{2}}}$
Hence the net acceleration is equal to centripetal acceleration in this case and hence the correct answer is option (A).
Note
There might be cases in which the tangential acceleration is also present. In such cases, we have to take the net resultant of both the accelerations ( i.e. both radial and tangential ) to find out the net acceleration. So in such cases the formula becomes ${a_{net}} = \sqrt {a_c^2 + a_r^2} $ will be applicable.
Use the formula ${a_c} = {\omega ^2}R$ to calculate the acceleration and also replace the value of angular frequency in terms of Time period by using the formula $\omega = \dfrac{{2\pi }}{T}$ and solve for acceleration to get the answer.
Complete step by step answer
It is given that the time period of the cycle wheel = 2 second.
Also given that the radius of the cycle wheel is = 4 m.
We know that the centripetal acceleration of the cycle is given by the formula,
${a_c} = {\omega ^2}R$ where,
$\omega $ is the angular frequency of the cycle wheel.
R is the radius of the cycle wheel.
We know that the angular frequency is related to time period by the formula,
$\omega = \dfrac{{2\pi }}{T}$
So on putting the value of angular frequency in the equation of centripetal acceleration we have,
$\Rightarrow {a_c} = {(\dfrac{{2\pi }}{T})^2} \times 4 $
$\Rightarrow {a_c} = 4{\pi ^2} \times \dfrac{4}{4} $
$\Rightarrow {a_c} = 4{\pi ^2}{\text{m/}}{{\text{s}}^{\text{2}}}$
Hence the net acceleration is equal to centripetal acceleration in this case and hence the correct answer is option (A).
Note
There might be cases in which the tangential acceleration is also present. In such cases, we have to take the net resultant of both the accelerations ( i.e. both radial and tangential ) to find out the net acceleration. So in such cases the formula becomes ${a_{net}} = \sqrt {a_c^2 + a_r^2} $ will be applicable.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

