
If $A$ can do a piece of work in $25$ days and $B$ in $20$ days. They work together for $5$ days and then $A$ goes away. In how many days will $B$ finish the remaining work?
a)$17$ days
b)$11$ days
c) $10$ days
d) None of these
Answer
555k+ views
Hint: Here we will be converting a number of days to one day work. So, we will take one day's work in fractions. Then take LCM for those numbers then substitute the days and derive the values we will get the $B$’s working days.
Complete step-by-step answer:
$A$’s $1$ day’s work $ = \dfrac{1}{{25}}$
Similarly, $B$’s $1$ day’s work $ = \dfrac{1}{{20}}$
$A$’s and $B$’s together $1$ day’s work
\[\dfrac{1}{{25}} + \dfrac{1}{{20}}\]
We will be taking LCM for $25,20$,
Here LCM is $ = 100$ ,
$\dfrac{1}{{25}}$ is multiply dividend and divisor as $4$ ,
$\dfrac{1}{{20}}$ is multiply dividend and divisor as $5$ ,
We will get the answer,
$\dfrac{4}{{100}} + \dfrac{5}{{100}} = \dfrac{{4 + 5}}{{100}} = \dfrac{9}{{100}}$
Their $5$ days work together $ = 5 \times 1$ day’s work
$1 - \dfrac{{45}}{{100}}$ (Here $45$means $A$’s piece of work+$B$’s piece of work as$20 + 25 = 45$ )
$\dfrac{{100}}{{100}} - \dfrac{{45}}{{100}} = \dfrac{{100 - 45}}{{100}} = \dfrac{{55}}{{100}}$
Now, this remaining work is done by $B$.
Let $B$ take $x$ days to complete it.
$
\dfrac{1}{{20}} \times x = \dfrac{{55}}{{100}} \\
\Rightarrow x = \dfrac{{55}}{{100}} \times 20 \\
\Rightarrow x = \dfrac{{55}}{5} \\
\Rightarrow x = 11 \\
$
Hence, $B$ will finish the remaining work in $11$ days.
So, here option $b$ is the correct answer.
Additional Information:
Here we will also find $A$’s remaining work. Same fraction method will be used for this kind of question. We will commonly be taking $100$ as a total number of days.
Note: Here we will be taking $100$. As the total number of days. Because it is an easy method for converting and substituting and multiplying values in given questions. Then LCM as the common method for here finding total number of days
Complete step-by-step answer:
$A$’s $1$ day’s work $ = \dfrac{1}{{25}}$
Similarly, $B$’s $1$ day’s work $ = \dfrac{1}{{20}}$
$A$’s and $B$’s together $1$ day’s work
\[\dfrac{1}{{25}} + \dfrac{1}{{20}}\]
We will be taking LCM for $25,20$,
Here LCM is $ = 100$ ,
$\dfrac{1}{{25}}$ is multiply dividend and divisor as $4$ ,
$\dfrac{1}{{20}}$ is multiply dividend and divisor as $5$ ,
We will get the answer,
$\dfrac{4}{{100}} + \dfrac{5}{{100}} = \dfrac{{4 + 5}}{{100}} = \dfrac{9}{{100}}$
Their $5$ days work together $ = 5 \times 1$ day’s work
$1 - \dfrac{{45}}{{100}}$ (Here $45$means $A$’s piece of work+$B$’s piece of work as$20 + 25 = 45$ )
$\dfrac{{100}}{{100}} - \dfrac{{45}}{{100}} = \dfrac{{100 - 45}}{{100}} = \dfrac{{55}}{{100}}$
Now, this remaining work is done by $B$.
Let $B$ take $x$ days to complete it.
$
\dfrac{1}{{20}} \times x = \dfrac{{55}}{{100}} \\
\Rightarrow x = \dfrac{{55}}{{100}} \times 20 \\
\Rightarrow x = \dfrac{{55}}{5} \\
\Rightarrow x = 11 \\
$
Hence, $B$ will finish the remaining work in $11$ days.
So, here option $b$ is the correct answer.
Additional Information:
Here we will also find $A$’s remaining work. Same fraction method will be used for this kind of question. We will commonly be taking $100$ as a total number of days.
Note: Here we will be taking $100$. As the total number of days. Because it is an easy method for converting and substituting and multiplying values in given questions. Then LCM as the common method for here finding total number of days
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE


