# If $A$ be the A.M. and $H$ be the H.M. between two numbers $a$ and $b$, then show that

$\dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} = \dfrac{A}{H}$

Last updated date: 17th Mar 2023

•

Total views: 307.2k

•

Views today: 6.86k

Answer

Verified

307.2k+ views

Hint- Simply put the general values of A.M. and H.M. in the L.H.S. of the equation and manipulate some terms.

We know that

$\because A$ is the A.M. of the numbers $a, b$

\[\therefore A = \dfrac{{a + b}}{2}\]

$\because H$ is the H.M. of the numbers $a, b$

$\therefore H = \dfrac{{2ab}}{{a + b}}$

Now substituting this in the L.H.S. of the given question

$

\Rightarrow \dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} \\

\Rightarrow \dfrac{{a - \dfrac{{a + b}}{2}}}{{a - \dfrac{{2ab}}{{a + b}}}} \times \dfrac{{b - \dfrac{{a + b}}{2}}}{{b - \dfrac{{2ab}}{{a + b}}}} \\

$

Further solving the numerator and denominator by taking LCM

$

\Rightarrow \dfrac{{\dfrac{{2a - a - b}}{2}}}{{\dfrac{{{a^2} + ab - 2ab}}{{a + b}}}} \times \dfrac{{\dfrac{{2b - a - b}}{2}}}{{\dfrac{{{b^2} + ab - 2ab}}{{a + b}}}} \\

\Rightarrow \dfrac{{\dfrac{{a - b}}{2}}}{{\dfrac{{{a^2} - ab}}{{a + b}}}} \times \dfrac{{\dfrac{{b - a}}{2}}}{{\dfrac{{{b^2} - ab}}{{a + b}}}} \\

\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2\left( {{a^2} - ab} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2\left( {{b^2} - ab} \right)}} \\

\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2a\left( {a - b} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2b\left( {b - a} \right)}} \\

$

Now cancelling the common terms from the numerator and denominator

$ \Rightarrow \dfrac{{a + b}}{{2a}} \times \dfrac{{a + b}}{{2b}}$

Above equation can be manipulated as done below in order to obtain the R.H.S.

$

\Rightarrow \dfrac{{a + b}}{2} \times \dfrac{{a + b}}{{2ab}} \\

\Rightarrow \dfrac{{\left( {\dfrac{{a + b}}{2}} \right)}}{{\left( {\dfrac{{2ab}}{{a + b}}} \right)}} \\

$

As we know that

$

\because \dfrac{{a + b}}{2} = A{\text{ and }}\dfrac{{2ab}}{{a + b}} = H \\

\Rightarrow \dfrac{A}{H} \\

$

It becomes equal to the R.H.S.

Hence, the equation in the question is proved.

Note- Arithmetic mean and harmonic mean are one of the most important concepts and are used in almost all types of problems. Arithmetic mean represents a number that is obtained by dividing the sum of the elements of a set by the number of values in the set. The harmonic mean is defined as the reciprocal of the arithmetic mean of the given data values. It is based on all values present in the set.

We know that

$\because A$ is the A.M. of the numbers $a, b$

\[\therefore A = \dfrac{{a + b}}{2}\]

$\because H$ is the H.M. of the numbers $a, b$

$\therefore H = \dfrac{{2ab}}{{a + b}}$

Now substituting this in the L.H.S. of the given question

$

\Rightarrow \dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} \\

\Rightarrow \dfrac{{a - \dfrac{{a + b}}{2}}}{{a - \dfrac{{2ab}}{{a + b}}}} \times \dfrac{{b - \dfrac{{a + b}}{2}}}{{b - \dfrac{{2ab}}{{a + b}}}} \\

$

Further solving the numerator and denominator by taking LCM

$

\Rightarrow \dfrac{{\dfrac{{2a - a - b}}{2}}}{{\dfrac{{{a^2} + ab - 2ab}}{{a + b}}}} \times \dfrac{{\dfrac{{2b - a - b}}{2}}}{{\dfrac{{{b^2} + ab - 2ab}}{{a + b}}}} \\

\Rightarrow \dfrac{{\dfrac{{a - b}}{2}}}{{\dfrac{{{a^2} - ab}}{{a + b}}}} \times \dfrac{{\dfrac{{b - a}}{2}}}{{\dfrac{{{b^2} - ab}}{{a + b}}}} \\

\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2\left( {{a^2} - ab} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2\left( {{b^2} - ab} \right)}} \\

\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2a\left( {a - b} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2b\left( {b - a} \right)}} \\

$

Now cancelling the common terms from the numerator and denominator

$ \Rightarrow \dfrac{{a + b}}{{2a}} \times \dfrac{{a + b}}{{2b}}$

Above equation can be manipulated as done below in order to obtain the R.H.S.

$

\Rightarrow \dfrac{{a + b}}{2} \times \dfrac{{a + b}}{{2ab}} \\

\Rightarrow \dfrac{{\left( {\dfrac{{a + b}}{2}} \right)}}{{\left( {\dfrac{{2ab}}{{a + b}}} \right)}} \\

$

As we know that

$

\because \dfrac{{a + b}}{2} = A{\text{ and }}\dfrac{{2ab}}{{a + b}} = H \\

\Rightarrow \dfrac{A}{H} \\

$

It becomes equal to the R.H.S.

Hence, the equation in the question is proved.

Note- Arithmetic mean and harmonic mean are one of the most important concepts and are used in almost all types of problems. Arithmetic mean represents a number that is obtained by dividing the sum of the elements of a set by the number of values in the set. The harmonic mean is defined as the reciprocal of the arithmetic mean of the given data values. It is based on all values present in the set.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE