
If A, B , C are angles of a triangle, then \[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right)\] is equal to
(A) $4\sin \left( A \right)\cos \left( B \right)\cos \left( C \right)$
(B) $4\cos \left( A \right)$
(C) $4\sin \left( A \right)\cos \left( A \right)$
(D) $4\cos \left( A \right)\cos \left( B \right)\sin \left( C \right)$
Answer
504.6k+ views
Hint: As we know, the sum of all angles of a triangle is 180 degrees. So, we use this to solve the question. Also, we uses the direct result of \[\sin \left( X \right) + \sin \left( Y \right) = 2\sin \left( {\dfrac{{X + Y}}{2}} \right)\cos \left( {\dfrac{{X - Y}}{2}} \right)\] and double angle formula of sin, that is, \[\sin \left( {2X} \right) = 2\sin \left( X \right)\cos \left( X \right)\] and also the result of property \[\cos \left( {X - Y} \right) + \cos \left( {X - Y} \right) = 2\cos \left( X \right)\cos \left( Y \right)\].
Complete step-by-step answer:
In this question, we are given that A, B, C are angles of a triangle. We know that the sum of three angles of a triangle is \[\pi \].
This implies that,
\[A + B + C = \pi \]
Multiplying both sides by 2, we get,
\[2A + 2B + 2C = 2\pi \]
\[2C = 2\pi - \left( {2A + 2B} \right)\]_ _ _ _ _ _ _ _ _ _ _(i)
We have to find the value of \[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right)\]. We solve this equation by first applying \[\sin (X) + \sin \left( Y \right)\] formula, that is, \[\sin \left( X \right) + \sin \left( Y \right) = 2\sin \left( {\dfrac{{X + Y}}{2}} \right)\cos \left( {\dfrac{{X - Y}}{2}} \right)\] in \[\sin \left( {2A} \right) + \sin \left( {2B} \right)\], so we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \sin \left( {2C} \right)\]
Substituting value of 2C from equation (i)
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \sin \left( {2\pi - \left( {2A + 2B} \right)} \right)\]
We know that, \[\sin \left( {2\pi - \theta } \right) = - \sin \left( \theta \right)\], so in the equation we will change \[\sin \left( {2\pi - \left( {2A + 2B} \right)} \right) = - \sin \left( {2A + 2B} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \left( { - \sin \left( {2A + 2B} \right)} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) + \;\sin \left( {2A + 2B} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \;\sin \left( {2\left( {A + B} \right)} \right)\]
We know that, \[\sin \left( {2X} \right) = 2\sin \left( X \right)\cos \left( X \right)\]
On applying this formula, we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \;2\sin \left( {A + B} \right)\cos \left( {A + B} \right)\]
Taking \[2\sin (A + B)\] as common,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\left[ {\cos \left( {A - B} \right) + \;\cos \left( {A + B} \right)} \right]\]
Now, on directly using the following result, we get,
\[\cos \left( {X - Y} \right) + \cos \left( {X + Y} \right) = 2\cos \left( X \right)\cos \left( Y \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\left[ {2\cos \left( A \right)\;\cos \left( B \right)} \right]\]_ _ _ _ _ _ _ _ _ _ _ _(ii)
Know, we know that, sum of three angles of a triangle is 180 degrees, that is,
\[A + B + C = \pi \]
This implies that,
\[A + B = \pi - C\]
Substituting value of (A+B) in equation (ii), we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\sin \left( {\pi - C} \right)\cos \left( A \right)\cos \left( B \right)\]
We also know that, \[\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)\], so we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\sin \left( C \right)\cos \left( A \right)\cos \left( B \right)\]
That can also be written as,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\cos \left( A \right)\cos \left( B \right)\sin \left( C \right)\]
So, the correct answer is “Option D”.
Note: The main thing to keep in mind while doing the questions is that you would have to remember trigonometric formulas by heart. You can directly use some of the results of the identities. You should be careful while checking the sign of trigonometric functions, like sine and cosecant functions are positive in 1st and 2nd quadrants, tangent and cotangent functions are positive in 1st and 3rd quadrants, while cosine and secant functions are positive in 1st and 4th quadrants. Take care while doing the calculations.
Complete step-by-step answer:
In this question, we are given that A, B, C are angles of a triangle. We know that the sum of three angles of a triangle is \[\pi \].
This implies that,
\[A + B + C = \pi \]
Multiplying both sides by 2, we get,
\[2A + 2B + 2C = 2\pi \]
\[2C = 2\pi - \left( {2A + 2B} \right)\]_ _ _ _ _ _ _ _ _ _ _(i)
We have to find the value of \[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right)\]. We solve this equation by first applying \[\sin (X) + \sin \left( Y \right)\] formula, that is, \[\sin \left( X \right) + \sin \left( Y \right) = 2\sin \left( {\dfrac{{X + Y}}{2}} \right)\cos \left( {\dfrac{{X - Y}}{2}} \right)\] in \[\sin \left( {2A} \right) + \sin \left( {2B} \right)\], so we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \sin \left( {2C} \right)\]
Substituting value of 2C from equation (i)
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \sin \left( {2\pi - \left( {2A + 2B} \right)} \right)\]
We know that, \[\sin \left( {2\pi - \theta } \right) = - \sin \left( \theta \right)\], so in the equation we will change \[\sin \left( {2\pi - \left( {2A + 2B} \right)} \right) = - \sin \left( {2A + 2B} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) - \left( { - \sin \left( {2A + 2B} \right)} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right) + \;\sin \left( {2A + 2B} \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \;\sin \left( {2\left( {A + B} \right)} \right)\]
We know that, \[\sin \left( {2X} \right) = 2\sin \left( X \right)\cos \left( X \right)\]
On applying this formula, we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \;2\sin \left( {A + B} \right)\cos \left( {A + B} \right)\]
Taking \[2\sin (A + B)\] as common,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\left[ {\cos \left( {A - B} \right) + \;\cos \left( {A + B} \right)} \right]\]
Now, on directly using the following result, we get,
\[\cos \left( {X - Y} \right) + \cos \left( {X + Y} \right) = 2\cos \left( X \right)\cos \left( Y \right)\]
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 2\sin \left( {A + B} \right)\left[ {2\cos \left( A \right)\;\cos \left( B \right)} \right]\]_ _ _ _ _ _ _ _ _ _ _ _(ii)
Know, we know that, sum of three angles of a triangle is 180 degrees, that is,
\[A + B + C = \pi \]
This implies that,
\[A + B = \pi - C\]
Substituting value of (A+B) in equation (ii), we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\sin \left( {\pi - C} \right)\cos \left( A \right)\cos \left( B \right)\]
We also know that, \[\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)\], so we get,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\sin \left( C \right)\cos \left( A \right)\cos \left( B \right)\]
That can also be written as,
\[\sin \left( {2A} \right) + \sin \left( {2B} \right) - \sin \left( {2C} \right) = 4\cos \left( A \right)\cos \left( B \right)\sin \left( C \right)\]
So, the correct answer is “Option D”.
Note: The main thing to keep in mind while doing the questions is that you would have to remember trigonometric formulas by heart. You can directly use some of the results of the identities. You should be careful while checking the sign of trigonometric functions, like sine and cosecant functions are positive in 1st and 2nd quadrants, tangent and cotangent functions are positive in 1st and 3rd quadrants, while cosine and secant functions are positive in 1st and 4th quadrants. Take care while doing the calculations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

