
If A, B and C are three events such that \[P\left( A \right){\text{ }} = {\text{ }}P\left( B \right){\text{ }} = {\text{ }}P\left( C \right){\text{ }} = {\text{ }}\dfrac{1}{4}{\text{ }},P\left( {AB} \right){\text{ }} = {\text{ }}0\], \[P\left( {AC} \right){\text{ }} = {\text{ }}\dfrac{1}{8}\], then\[\;P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }} = \]
\[\left( 1 \right)\]\[0.125\]
\[\left( 2 \right)\]\[0.25\]
\[\left( 3 \right)\]\[0.375\]
\[\left( 4 \right)\]\[0.5\]
Answer
486.6k+ views
Hint: We have to find the\[P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right)\]. We solve the question using condition probability and using the concept of meaning of some formulas . We also use the knowledge of the identity of probability of union of two events . From the given data we can compute the values of the probability of \[P{\text{ }}\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }}.\]
Complete step-by-step solution:
The intersection of terms are said to the common elements shared by the two events . The intersection is also stated as “ and “ . whereas the union of the terms is said to be the sum total of the two events and subtracting the common portion or the intersection of the two events . The union is also stated as “ or “ .
Given :
\[P\left( A \right){\text{ }} = {\text{ }}P\left( B \right){\text{ }} = {\text{ }}P\left( C \right){\text{ }} = {\text{ }}\dfrac{1}{4}{\text{ }},{\text{ }}P\left( {AB} \right){\text{ }} = {\text{ }}0{\text{ }},{\text{ }}P\left( {AC} \right){\text{ }} = {\text{ }}\dfrac{1}{8}\]
Recognising,
\[P\left( {AB} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right)\]
And we know that
\[P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{P{\text{ }}\left( {{\text{ }}A{\text{ }} \cap B{\text{ }}} \right){\text{ }}}}{{{\text{ }}P{\text{ }}\left( {{\text{ }}B{\text{ }}} \right)}}\]
Now ,
\[P\left( {AB} \right){\text{ }} = \dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{{\text{ }}P\left( {{\text{ }}B{\text{ }}} \right)}}\]
As given , \[P\left( {AB} \right){\text{ }} = {\text{ }}0\]
So ,
\[\dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{P\left( {{\text{ }}B{\text{ }}} \right)}}{\text{ }} = {\text{ }}0\;\]
From here we can say that
\[P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0\]
We know that the probability of sum of two events is given by the formula :
\[P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right){\text{ }} - {\text{ }}P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)\]
Putting , value of \[P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0\]
\[P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right)\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/4{\text{ }} + {\text{ }}1/4\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/2\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right)\]
As , both have the same meaning
So ,
\[P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5\]
Thus , the correct option is \[\left( 4 \right)\]
Note: We don’t need the values of \[P\left( C \right)\]and \[P\left( {AC} \right)\]for solving the required problem . It was just to create a sense of confusion . Using the data we can calculate the value \[of{\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}C{\text{ }}} \right)\]as we can evaluate the value of \[P\left( {A{\text{ }} \cap {\text{ }}C} \right)\]from the formula stated above .
We find the relation by using the conditional probability formula . If $A$ and $B$are mutually exclusive events , then\[P\left( {A{\text{ }} \cup {\text{ }}B} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right)\]. The basic property of probability is that the probability of an event can never be greater than$1$.
If two events $A$ and $B$ are independent , then
\[P\left( {E{\text{ }} \cap {\text{ }}F} \right){\text{ }} = P\left( E \right){\text{ }} \times {\text{ }}P\left( F \right)\]
\[P\left( {E{\text{ }}|{\text{ }}F} \right){\text{ }} = {\text{ }}P\left( E \right){\text{ }},{\text{ }}P\left( F \right){\text{ }} \ne 0\]
\[P\left( {F{\text{ }}|{\text{ }}E} \right){\text{ }} = {\text{ }}P\left( F \right){\text{ }},{\text{ }}P\left( E \right){\text{ }} \ne {\text{ }}0\]
Complete step-by-step solution:
The intersection of terms are said to the common elements shared by the two events . The intersection is also stated as “ and “ . whereas the union of the terms is said to be the sum total of the two events and subtracting the common portion or the intersection of the two events . The union is also stated as “ or “ .
Given :
\[P\left( A \right){\text{ }} = {\text{ }}P\left( B \right){\text{ }} = {\text{ }}P\left( C \right){\text{ }} = {\text{ }}\dfrac{1}{4}{\text{ }},{\text{ }}P\left( {AB} \right){\text{ }} = {\text{ }}0{\text{ }},{\text{ }}P\left( {AC} \right){\text{ }} = {\text{ }}\dfrac{1}{8}\]
Recognising,
\[P\left( {AB} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right)\]
And we know that
\[P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{P{\text{ }}\left( {{\text{ }}A{\text{ }} \cap B{\text{ }}} \right){\text{ }}}}{{{\text{ }}P{\text{ }}\left( {{\text{ }}B{\text{ }}} \right)}}\]
Now ,
\[P\left( {AB} \right){\text{ }} = \dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{{\text{ }}P\left( {{\text{ }}B{\text{ }}} \right)}}\]
As given , \[P\left( {AB} \right){\text{ }} = {\text{ }}0\]
So ,
\[\dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{P\left( {{\text{ }}B{\text{ }}} \right)}}{\text{ }} = {\text{ }}0\;\]
From here we can say that
\[P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0\]
We know that the probability of sum of two events is given by the formula :
\[P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right){\text{ }} - {\text{ }}P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)\]
Putting , value of \[P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0\]
\[P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right)\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/4{\text{ }} + {\text{ }}1/4\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/2\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5\]
\[\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right)\]
As , both have the same meaning
So ,
\[P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5\]
Thus , the correct option is \[\left( 4 \right)\]
Note: We don’t need the values of \[P\left( C \right)\]and \[P\left( {AC} \right)\]for solving the required problem . It was just to create a sense of confusion . Using the data we can calculate the value \[of{\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}C{\text{ }}} \right)\]as we can evaluate the value of \[P\left( {A{\text{ }} \cap {\text{ }}C} \right)\]from the formula stated above .
We find the relation by using the conditional probability formula . If $A$ and $B$are mutually exclusive events , then\[P\left( {A{\text{ }} \cup {\text{ }}B} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right)\]. The basic property of probability is that the probability of an event can never be greater than$1$.
If two events $A$ and $B$ are independent , then
\[P\left( {E{\text{ }} \cap {\text{ }}F} \right){\text{ }} = P\left( E \right){\text{ }} \times {\text{ }}P\left( F \right)\]
\[P\left( {E{\text{ }}|{\text{ }}F} \right){\text{ }} = {\text{ }}P\left( E \right){\text{ }},{\text{ }}P\left( F \right){\text{ }} \ne 0\]
\[P\left( {F{\text{ }}|{\text{ }}E} \right){\text{ }} = {\text{ }}P\left( F \right){\text{ }},{\text{ }}P\left( E \right){\text{ }} \ne {\text{ }}0\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

