
If a, b and c are three distinct real numbers in G.P and \[a+b+c=xb\], then the value of x cannot be
(a) 4
(b) –3
(c) –2
(d) 2
Answer
574.8k+ views
Hint: We start solving the problem by recalling the general form of terms in a G.P (Geometric Progression). We assume a common ratio as ‘r’ and write all the given numbers in terms of ‘a’ and ‘r’. After writing we get a quadratic equation in r after making subsequent arrangements. We take discriminant greater than zero to get the solution set for x.
Complete step-by-step answer:
According to the problem, we have three distinct numbers a, b and c which are in G.P (Geometric Progression) and these numbers satisfy \[a+b+c=xb\]. We need to find the range of x so that the values that are not valid for x can be chosen.
We know that the general terms of the G.P (Geometric Progression) is defined as $p$, $pr$, $p{{r}^{2}}$,…….,$p{{r}^{n-1}}$. Where r is a common ratio. We apply this definition to the numbers a, b and c.
We get $b=ar$ and $c=a{{r}^{2}}$. We substitute these values in \[a+b+c=xb\].
\[\Rightarrow a+ar+a{{r}^{2}}=x\left( ar \right)\].
\[\Rightarrow a+ar-xar+a{{r}^{2}}=0\].
\[\Rightarrow a+ar\left( 1-x \right)+a{{r}^{2}}=0\].
\[\Rightarrow 1+r\left( 1-x \right)+{{r}^{2}}=0\].
\[\Rightarrow {{r}^{2}}+r\left( 1-x \right)+1=0\] -(1).
We have given that a, b and c as three distinct numbers. So, we have three distinct real values of a, b and c. If we cannot have a solution for equation (1), then a, b and c cannot be distinct values.
So, equation (1) must have real roots for ‘r’ in order to get the distinct values for a, b and c.
We know that to get real for the quadratic equation $a{{x}^{2}}+bx+c=0$, we should have discriminant (D) greater than 0 i.e., $D=\sqrt{{{b}^{2}}-4ac}>0$.
So, take determinant for equation (1).
\[\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)>0\].
\[\Rightarrow {{x}^{2}}-2x+1-4>0\].
\[\Rightarrow {{x}^{2}}-2x-3>0\].
\[\Rightarrow {{x}^{2}}-3x+x-3>0\].
\[\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)>0\].
\[\Rightarrow \left( x+1 \right)\left( x-3 \right)>0\] -(2).
We know that the solution set for x in the inequality $\left( x-a \right).\left( x-b \right)\ge 0$ and $ a < b $ is $ x < a \text{ or }x > b $.
We get the solution set for x of the inequality in equation (2) is $x < -1\text{ or }x > 3$.
From options we can see that 2 is not in the solution set $ x < -1\text{ or } x > 3$.
x cannot be equal to 2.
So, the correct answer is “Option d”.
Note: If we take real and equal root conditions for equation (1), we get as follows.
$\Rightarrow D=\sqrt{{{b}^{2}}-4ac}=0$.
\[\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)=0\].
\[\Rightarrow {{x}^{2}}-2x+1-4=0\].
\[\Rightarrow {{x}^{2}}-2x-3=0\].
\[\Rightarrow {{x}^{2}}-3x+x-3=0\].
\[\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)=0\].
\[\Rightarrow \left( x+1 \right)\left( x-3 \right)=0\].
\[\Rightarrow \left( x+1 \right)=0\text{ or }\left( x-3 \right)=0\].
\[\Rightarrow x=-1\text{ or }x=3\].
Let us substitute $x=-1$ in equation (1).
\[\Rightarrow {{r}^{2}}+r\left( 1-\left( -1 \right) \right)+1=0\].
\[\Rightarrow {{r}^{2}}+r\left( 1+1 \right)+1=0\].
\[\Rightarrow {{r}^{2}}+2r+1=0\].
\[\Rightarrow {{\left( r+1 \right)}^{2}}=0\].
\[\Rightarrow r+1=0\].
\[\Rightarrow r=-1\].
We can see that $c=a{{\left( -1 \right)}^{2}}$.
$\Rightarrow c=a\left( 1 \right)$.
$\Rightarrow c=a$, but we need all the numbers a, b and c distinct. So, x cannot be equal to -1.
Let us substitute $x=3$ in equation (1).
\[\Rightarrow {{r}^{2}}+r\left( 1-3 \right)+1=0\].
\[\Rightarrow {{r}^{2}}+r\left( -2 \right)+1=0\].
\[\Rightarrow {{r}^{2}}-2r+1=0\].
\[\Rightarrow {{\left( r-1 \right)}^{2}}=0\].
\[\Rightarrow r-1=0\].
\[\Rightarrow r=1\].
We can see that $c=a{{\left( 1 \right)}^{2}}$.
$\Rightarrow c=a\left( 1 \right)$.
$\Rightarrow c=a$, but we need all the numbers a, b and c distinct. So, x cannot be equal to 3.
Complete step-by-step answer:
According to the problem, we have three distinct numbers a, b and c which are in G.P (Geometric Progression) and these numbers satisfy \[a+b+c=xb\]. We need to find the range of x so that the values that are not valid for x can be chosen.
We know that the general terms of the G.P (Geometric Progression) is defined as $p$, $pr$, $p{{r}^{2}}$,…….,$p{{r}^{n-1}}$. Where r is a common ratio. We apply this definition to the numbers a, b and c.
We get $b=ar$ and $c=a{{r}^{2}}$. We substitute these values in \[a+b+c=xb\].
\[\Rightarrow a+ar+a{{r}^{2}}=x\left( ar \right)\].
\[\Rightarrow a+ar-xar+a{{r}^{2}}=0\].
\[\Rightarrow a+ar\left( 1-x \right)+a{{r}^{2}}=0\].
\[\Rightarrow 1+r\left( 1-x \right)+{{r}^{2}}=0\].
\[\Rightarrow {{r}^{2}}+r\left( 1-x \right)+1=0\] -(1).
We have given that a, b and c as three distinct numbers. So, we have three distinct real values of a, b and c. If we cannot have a solution for equation (1), then a, b and c cannot be distinct values.
So, equation (1) must have real roots for ‘r’ in order to get the distinct values for a, b and c.
We know that to get real for the quadratic equation $a{{x}^{2}}+bx+c=0$, we should have discriminant (D) greater than 0 i.e., $D=\sqrt{{{b}^{2}}-4ac}>0$.
So, take determinant for equation (1).
\[\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)>0\].
\[\Rightarrow {{x}^{2}}-2x+1-4>0\].
\[\Rightarrow {{x}^{2}}-2x-3>0\].
\[\Rightarrow {{x}^{2}}-3x+x-3>0\].
\[\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)>0\].
\[\Rightarrow \left( x+1 \right)\left( x-3 \right)>0\] -(2).
We know that the solution set for x in the inequality $\left( x-a \right).\left( x-b \right)\ge 0$ and $ a < b $ is $ x < a \text{ or }x > b $.
We get the solution set for x of the inequality in equation (2) is $x < -1\text{ or }x > 3$.
From options we can see that 2 is not in the solution set $ x < -1\text{ or } x > 3$.
x cannot be equal to 2.
So, the correct answer is “Option d”.
Note: If we take real and equal root conditions for equation (1), we get as follows.
$\Rightarrow D=\sqrt{{{b}^{2}}-4ac}=0$.
\[\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)=0\].
\[\Rightarrow {{x}^{2}}-2x+1-4=0\].
\[\Rightarrow {{x}^{2}}-2x-3=0\].
\[\Rightarrow {{x}^{2}}-3x+x-3=0\].
\[\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)=0\].
\[\Rightarrow \left( x+1 \right)\left( x-3 \right)=0\].
\[\Rightarrow \left( x+1 \right)=0\text{ or }\left( x-3 \right)=0\].
\[\Rightarrow x=-1\text{ or }x=3\].
Let us substitute $x=-1$ in equation (1).
\[\Rightarrow {{r}^{2}}+r\left( 1-\left( -1 \right) \right)+1=0\].
\[\Rightarrow {{r}^{2}}+r\left( 1+1 \right)+1=0\].
\[\Rightarrow {{r}^{2}}+2r+1=0\].
\[\Rightarrow {{\left( r+1 \right)}^{2}}=0\].
\[\Rightarrow r+1=0\].
\[\Rightarrow r=-1\].
We can see that $c=a{{\left( -1 \right)}^{2}}$.
$\Rightarrow c=a\left( 1 \right)$.
$\Rightarrow c=a$, but we need all the numbers a, b and c distinct. So, x cannot be equal to -1.
Let us substitute $x=3$ in equation (1).
\[\Rightarrow {{r}^{2}}+r\left( 1-3 \right)+1=0\].
\[\Rightarrow {{r}^{2}}+r\left( -2 \right)+1=0\].
\[\Rightarrow {{r}^{2}}-2r+1=0\].
\[\Rightarrow {{\left( r-1 \right)}^{2}}=0\].
\[\Rightarrow r-1=0\].
\[\Rightarrow r=1\].
We can see that $c=a{{\left( 1 \right)}^{2}}$.
$\Rightarrow c=a\left( 1 \right)$.
$\Rightarrow c=a$, but we need all the numbers a, b and c distinct. So, x cannot be equal to 3.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

