
If A, B and C are the angles of a triangle such that sec (A – B), sec (A) and sec (A + B) are in arithmetic progression, then
\[\left( a \right){{\operatorname{cosec}}^{2}}A=2{{\operatorname{cosec}}^{2}}\dfrac{B}{2}\]
\[\left( b \right)2se{{c}^{2}}A=se{{c}^{2}}\dfrac{B}{2}\]
\[\left( c \right)2{{\operatorname{cosec}}^{2}}A={{\operatorname{cosec}}^{2}}\dfrac{B}{2}\]
\[\left( d \right)2se{{c}^{2}}B=se{{c}^{2}}\dfrac{A}{2}\]
Answer
513.3k+ views
Hint: In AP, the sum of the first and the last term is twice the middle term. So, we get that \[2\sec A=\sec \left( A+B \right)+\sec \left( A-B \right),\] then we will use reciprocal identity, \[\sec \theta =\dfrac{1}{\cos \theta }\] to simplify them and after this, we will expand cos (A + B) as \[\cos A\cos B-\sin A\sin B\] and cos (A – B) as \[\cos A\cos B+\sin A\sin B.\] We will solve to get a simplified value and at last we will convert \[1+\cos B\] to \[2{{\cos }^{2}}\dfrac{B}{2}\] using \[\cos \dfrac{\theta }{2}=\dfrac{\sqrt{1+\cos \theta }}{2}\] to get the required answer.
Complete step-by-step answer:
We are given that A, B and C are the angles of triangles such that sin (A – B), sec A, and sec (A + B) are in AP. As A, B and C are the angles of the triangle, so their sum must be equal to \[{{180}^{\circ }}\] by the angle sum property of the triangle.
\[\Rightarrow A+B+C={{180}^{\circ }}......\left( i \right)\]
We know that when the three terms are in the Arithmetic Progression, then the sum of the first and last sum is always equal to twice the middle term. As we have seen that sec (A – B), sec A, sec (A + B) are in AP, so the sum of sec (A – B) and sec (A + B) will be equal to two times sec A. So, we get,
\[2\sec A=\sec \left( A-B \right)+\sec \left( A+B \right)\]
Now, we know that,
\[\sec \theta =\dfrac{1}{\cos \theta }\]
So, using this in the above equality, we get,
\[2\times \left( \dfrac{1}{\cos A} \right)=\dfrac{1}{\cos \left( A-B \right)}+\dfrac{1}{\cos \left( A+B \right)}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{\cos \left( A+B \right)\cos \left( A-B \right)}\]
As we have,
\[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]
\[\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B\]
So, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\left( \cos A\cos B-\sin A\sin B \right)+\left( \cos A\cos B+\sin A\sin B \right)}{\left( \cos A\cos B-\sin A\sin B \right)\left( \cos A\cos B+\sin A\sin B \right)}\]
As we know that,
\[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
So, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\cos A\cos B-\sin A\sin B+\cos A\cos B+\sin A\sin B}{{{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{2\cos A\cos B}{{{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B}\]
Cross multiplying, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B={{\cos }^{2}}A\cos B\]
Now, we know that,
\[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
So, using this, we get,
\[{{\sin }^{2}}A=1-{{\cos }^{2}}A\]
\[{{\sin }^{2}}B=1-{{\cos }^{2}}B\]
Applying these formulas above, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-\left( 1-{{\cos }^{2}}A \right)\left( 1-{{\cos }^{2}}B \right)={{\cos }^{2}}A\cos B\]
Opening the bracket, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-1+{{\cos }^{2}}B+{{\cos }^{2}}A-{{\cos }^{2}}A{{\cos }^{2}}B={{\cos }^{2}}A\cos B\]
Now, cancelling the like terms, we get,
\[\Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-1={{\cos }^{2}}A\cos B\]
Simplifying further, we get,
\[\Rightarrow {{\cos }^{2}}A-{{\cos }^{2}}A\cos B=1-{{\cos }^{2}}B\]
\[\Rightarrow {{\cos }^{2}}A\left( 1-\cos B \right)=1-{{\cos }^{2}}B\]
As,
\[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
We get,
\[\Rightarrow {{\cos }^{2}}A\left( 1-\cos B \right)=\left( 1-\cos B \right)\left( 1+\cos B \right)\]
Dividing both the sides by 1 – cos B, we get,
\[\Rightarrow {{\cos }^{2}}A=1+\cos B\]
Now as,
\[\cos \dfrac{\theta }{2}=\sqrt{\dfrac{1+\cos \theta }{2}}\]
So, applying this we get,
\[\Rightarrow 1+\cos B=2{{\cos }^{2}}\dfrac{B}{2}\]
Hence,
\[\Rightarrow {{\cos }^{2}}A=2{{\cos }^{2}}\dfrac{B}{2}\]
Again using reciprocal relation, \[\sec \theta =\dfrac{1}{\cos \theta },\] we get,
\[\Rightarrow {{\sec }^{2}}A=\dfrac{1}{2}{{\sec }^{2}}\dfrac{B}{2}\]
So, the correct answer is “Option B”.
Note: While simplifying, remember \[\cos \left( A+B \right)\ne \cos A+\cos B.\] But it is equal to \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B.\] Also, remember that, \[1-{{\cos }^{2}}B=\left( 1-\cos B \right)\left( 1+\cos B \right)\] becomes \[{{1}^{2}}=1,\] so \[1-{{\cos }^{2}}B={{1}^{2}}-{{\cos }^{2}}B.\] Now using, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] we have, \[1-{{\cos }^{2}}B=\left( 1+\cos B \right)\left( 1-\cos B \right).\]
Complete step-by-step answer:
We are given that A, B and C are the angles of triangles such that sin (A – B), sec A, and sec (A + B) are in AP. As A, B and C are the angles of the triangle, so their sum must be equal to \[{{180}^{\circ }}\] by the angle sum property of the triangle.
\[\Rightarrow A+B+C={{180}^{\circ }}......\left( i \right)\]
We know that when the three terms are in the Arithmetic Progression, then the sum of the first and last sum is always equal to twice the middle term. As we have seen that sec (A – B), sec A, sec (A + B) are in AP, so the sum of sec (A – B) and sec (A + B) will be equal to two times sec A. So, we get,
\[2\sec A=\sec \left( A-B \right)+\sec \left( A+B \right)\]
Now, we know that,
\[\sec \theta =\dfrac{1}{\cos \theta }\]
So, using this in the above equality, we get,
\[2\times \left( \dfrac{1}{\cos A} \right)=\dfrac{1}{\cos \left( A-B \right)}+\dfrac{1}{\cos \left( A+B \right)}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{\cos \left( A+B \right)\cos \left( A-B \right)}\]
As we have,
\[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]
\[\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B\]
So, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\left( \cos A\cos B-\sin A\sin B \right)+\left( \cos A\cos B+\sin A\sin B \right)}{\left( \cos A\cos B-\sin A\sin B \right)\left( \cos A\cos B+\sin A\sin B \right)}\]
As we know that,
\[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
So, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{\cos A\cos B-\sin A\sin B+\cos A\cos B+\sin A\sin B}{{{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{2}{\cos A}=\dfrac{2\cos A\cos B}{{{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B}\]
Cross multiplying, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-{{\sin }^{2}}A{{\sin }^{2}}B={{\cos }^{2}}A\cos B\]
Now, we know that,
\[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
So, using this, we get,
\[{{\sin }^{2}}A=1-{{\cos }^{2}}A\]
\[{{\sin }^{2}}B=1-{{\cos }^{2}}B\]
Applying these formulas above, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-\left( 1-{{\cos }^{2}}A \right)\left( 1-{{\cos }^{2}}B \right)={{\cos }^{2}}A\cos B\]
Opening the bracket, we get,
\[\Rightarrow {{\cos }^{2}}A{{\cos }^{2}}B-1+{{\cos }^{2}}B+{{\cos }^{2}}A-{{\cos }^{2}}A{{\cos }^{2}}B={{\cos }^{2}}A\cos B\]
Now, cancelling the like terms, we get,
\[\Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-1={{\cos }^{2}}A\cos B\]
Simplifying further, we get,
\[\Rightarrow {{\cos }^{2}}A-{{\cos }^{2}}A\cos B=1-{{\cos }^{2}}B\]
\[\Rightarrow {{\cos }^{2}}A\left( 1-\cos B \right)=1-{{\cos }^{2}}B\]
As,
\[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
We get,
\[\Rightarrow {{\cos }^{2}}A\left( 1-\cos B \right)=\left( 1-\cos B \right)\left( 1+\cos B \right)\]
Dividing both the sides by 1 – cos B, we get,
\[\Rightarrow {{\cos }^{2}}A=1+\cos B\]
Now as,
\[\cos \dfrac{\theta }{2}=\sqrt{\dfrac{1+\cos \theta }{2}}\]
So, applying this we get,
\[\Rightarrow 1+\cos B=2{{\cos }^{2}}\dfrac{B}{2}\]
Hence,
\[\Rightarrow {{\cos }^{2}}A=2{{\cos }^{2}}\dfrac{B}{2}\]
Again using reciprocal relation, \[\sec \theta =\dfrac{1}{\cos \theta },\] we get,
\[\Rightarrow {{\sec }^{2}}A=\dfrac{1}{2}{{\sec }^{2}}\dfrac{B}{2}\]
So, the correct answer is “Option B”.
Note: While simplifying, remember \[\cos \left( A+B \right)\ne \cos A+\cos B.\] But it is equal to \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B.\] Also, remember that, \[1-{{\cos }^{2}}B=\left( 1-\cos B \right)\left( 1+\cos B \right)\] becomes \[{{1}^{2}}=1,\] so \[1-{{\cos }^{2}}B={{1}^{2}}-{{\cos }^{2}}B.\] Now using, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),\] we have, \[1-{{\cos }^{2}}B=\left( 1+\cos B \right)\left( 1-\cos B \right).\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
