
If a angle $A$ of a $\Delta ABC$ satisfies the equation $5\cos A + 3 = 0$, then the roots of the quadratic equation, $9{x^2} + 27x + 20 = 0$ are,
(A) $\sin A,\sec A$
(B) $\sec A,\tan A$
(C) $\tan A,\cos A$
(D) $\sec A,\cot A$
Answer
581.4k+ views
Hint: Solve the given equation to find out the value of $\cos A$ and with the help of it, find all other trigonometric ratios, i.e., $\sin A,\tan A,CotA,\operatorname{Sec} A,\cos ecA$.
Complete step-by-step answer:
Given equation is: $5\cos A + 3 = 0$
We can solve it to find the value of $\cos A$.
$\therefore 5\cos A = - 3$
$ \Rightarrow \cos A = {{ - 3}}{5}$
Clearly, $\cos A$ lies in the second quadrant. Therefore , only $\sin A,\cos ecA$ are positive while all other trigonometric ratios are negative.
We know that, $\cos A = {{ - 3}}{5} = \dfrac{{Base}}{{Hypotenuse}}$
Now, we have to find the perpendicular of the triangle.
By applying Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Perpendicular} \right)^2}$
$ \Rightarrow $${\left( 5 \right)^2} = {\left( 3 \right)^2} + {\left( {Perpendicular} \right)^2}$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = {\left( 5 \right)^2} - {\left( 3 \right)^2}$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = 25 - 9$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = 16$
$ \Rightarrow $$Perpendicular = \sqrt {16} $
$ \Rightarrow $$Perpendicular = 4$
Now, $\sin A = \dfrac{{Perpendicular}}{{Hypotenuse}} = {4}{5}$ and $\cos ecA = {1}{{\sin A}} = {5}{4}$
$\cos A = \dfrac{{Base}}{{Hypotenuse}} = \dfrac{{ - 3}}{5}$ and $\sec A = \dfrac{1}{{\cos A}} = \dfrac{{ - 5}}{3}$
$\tan A = \dfrac{{Perpendicular}}{{Base}} = \dfrac{{ - 4}}{3}$ and $\cot A = \dfrac{1}{{\tan A}} = \dfrac{{ - 3}}{4}$
Given quadratic equation is: $9{x^2} + 27x + 20 = 0$
To find the roots of given quadratic equation, compare it with $a{x^2} + bx + c = 0$ and we get-
$a = 9,b = 12,c = 27$
Now the roots of quadratic equation is calculated by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
x = \dfrac{{ - 27 \pm \sqrt {{{\left( {27} \right)}^2} - 4\left( 9 \right)\left( {20} \right)} }}{{2\left( 9 \right)}} \\
\Rightarrow x = \dfrac{{ - 27 \pm \sqrt {729 - 720} }}{{18}} \\
\Rightarrow x = \dfrac{{ - 27 \pm \sqrt 9 }}{{18}} \\
\Rightarrow x = \dfrac{{ - 27 \pm 3}}{{18}} \\
\\
$
$ \Rightarrow $$x = \dfrac{{ - 27 + 3}}{{18}}$ and $x = \dfrac{{ - 27 - 3}}{{18}}$
$ \Rightarrow x = \dfrac{{ - 24}}{{18}}$ and $x = \dfrac{{ - 30}}{{18}}$
$ \Rightarrow x = \dfrac{{ - 4}}{3}$ and $x = \dfrac{{ - 5}}{3}$
We have, $\tan A = \dfrac{{ - 4}}{3}$ and $\sec A = \dfrac{{ - 5}}{3}$
So, the roots of the given equation are $\sec A,\tan A$.
Hence, option (B) is the correct answer.
Note: The another method to find out the roots of given quadratic equation is as follows:
$9{x^2} + 27x + 20 = 0$
$9{x^2} + \left( {15 + 12} \right)x + 20 = 0$
$9{x^2} + 15x + 12x + 20 = 0$
$3x\left( {3x + 5} \right) + 4\left( {3x + 5} \right) = 0$
$\left( {3x + 5} \right)\left( {3x + 4} \right) = 0$
$x = \dfrac{{ - 5}}{3}$ and $ \Rightarrow x = \dfrac{{ - 4}}{3}$
Complete step-by-step answer:
Given equation is: $5\cos A + 3 = 0$
We can solve it to find the value of $\cos A$.
$\therefore 5\cos A = - 3$
$ \Rightarrow \cos A = {{ - 3}}{5}$
Clearly, $\cos A$ lies in the second quadrant. Therefore , only $\sin A,\cos ecA$ are positive while all other trigonometric ratios are negative.
We know that, $\cos A = {{ - 3}}{5} = \dfrac{{Base}}{{Hypotenuse}}$
Now, we have to find the perpendicular of the triangle.
By applying Pythagoras theorem,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Perpendicular} \right)^2}$
$ \Rightarrow $${\left( 5 \right)^2} = {\left( 3 \right)^2} + {\left( {Perpendicular} \right)^2}$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = {\left( 5 \right)^2} - {\left( 3 \right)^2}$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = 25 - 9$
$ \Rightarrow $${\left( {Perpendicular} \right)^2} = 16$
$ \Rightarrow $$Perpendicular = \sqrt {16} $
$ \Rightarrow $$Perpendicular = 4$
Now, $\sin A = \dfrac{{Perpendicular}}{{Hypotenuse}} = {4}{5}$ and $\cos ecA = {1}{{\sin A}} = {5}{4}$
$\cos A = \dfrac{{Base}}{{Hypotenuse}} = \dfrac{{ - 3}}{5}$ and $\sec A = \dfrac{1}{{\cos A}} = \dfrac{{ - 5}}{3}$
$\tan A = \dfrac{{Perpendicular}}{{Base}} = \dfrac{{ - 4}}{3}$ and $\cot A = \dfrac{1}{{\tan A}} = \dfrac{{ - 3}}{4}$
Given quadratic equation is: $9{x^2} + 27x + 20 = 0$
To find the roots of given quadratic equation, compare it with $a{x^2} + bx + c = 0$ and we get-
$a = 9,b = 12,c = 27$
Now the roots of quadratic equation is calculated by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$
x = \dfrac{{ - 27 \pm \sqrt {{{\left( {27} \right)}^2} - 4\left( 9 \right)\left( {20} \right)} }}{{2\left( 9 \right)}} \\
\Rightarrow x = \dfrac{{ - 27 \pm \sqrt {729 - 720} }}{{18}} \\
\Rightarrow x = \dfrac{{ - 27 \pm \sqrt 9 }}{{18}} \\
\Rightarrow x = \dfrac{{ - 27 \pm 3}}{{18}} \\
\\
$
$ \Rightarrow $$x = \dfrac{{ - 27 + 3}}{{18}}$ and $x = \dfrac{{ - 27 - 3}}{{18}}$
$ \Rightarrow x = \dfrac{{ - 24}}{{18}}$ and $x = \dfrac{{ - 30}}{{18}}$
$ \Rightarrow x = \dfrac{{ - 4}}{3}$ and $x = \dfrac{{ - 5}}{3}$
We have, $\tan A = \dfrac{{ - 4}}{3}$ and $\sec A = \dfrac{{ - 5}}{3}$
So, the roots of the given equation are $\sec A,\tan A$.
Hence, option (B) is the correct answer.
Note: The another method to find out the roots of given quadratic equation is as follows:
$9{x^2} + 27x + 20 = 0$
$9{x^2} + \left( {15 + 12} \right)x + 20 = 0$
$9{x^2} + 15x + 12x + 20 = 0$
$3x\left( {3x + 5} \right) + 4\left( {3x + 5} \right) = 0$
$\left( {3x + 5} \right)\left( {3x + 4} \right) = 0$
$x = \dfrac{{ - 5}}{3}$ and $ \Rightarrow x = \dfrac{{ - 4}}{3}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

