
If a and b distinct integers, prove that a-b is a factor of $$a^{n}-b^{n}$$, whenever n is a positive integer.
Answer
591k+ views
Hint: In this question it is given that if a and b distinct integers, then we have to prove that a-b is a factor of $$a^{n}-b^{n}$$, whenever n is a positive integer. So to prove this we need to know the binomial expansion, which is-
$$\left( a+b\right)^{n} =\ ^{n} C_{0}\ a^{n}+\ ^{n} C_{1}\ a^{n-1}b+\ ^{n} C_{2}\ a^{n-2}b^{2}+\cdots +\ ^{n} C_{n}\ b^{n}$$......(1)
And after that if we are able to show that $$a^{n}-b^{n}=\left( a-b\right) \cdot k$$ (where ‘k’ is a natural number) then we can easily say that a-b is a factor of $$a^{n}-b^{n}$$.
Complete step-by-step solution:
So in order to find the solution we can write $a^{n}$ as,
$$a^{n}=\left( a\right)^{n} $$
$$\Rightarrow a^{n}=\left( a-b+b\right)^{n} $$
$$\Rightarrow a^{n}=\left\{ b+\left( a-b\right) \right\}^{n} $$
Now applying the formula (1) by taking a=a and b=a-b, we get,
$$\Rightarrow a^{n}=\ ^{n} C_{0}\ b^{n}+\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$
$$\Rightarrow a^{n}=b^{n}+\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$ [since, $${}^{n}C_{0}=1$$]
$$\Rightarrow a^{n}-b^{n}=\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$
$$\Rightarrow a^{n}-b^{n}=\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) \left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right) \left( a-b\right)^{n-1} $$
$$\Rightarrow a^{n}-b^{n}=\left( a-b\right) [\ ^{n} C_{1}\ b^{n-1}+\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n-1} ]$$
$$\Rightarrow a^{n}-b^{n}=\left( a-b\right) \cdot k$$
Where, $$k=[\ ^{n} C_{1}\ b^{n-1}+\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n-1} ]$$ is a real numbers.
Therefore, we can say that a-b is a factor of $$a^{n}-b^{n}$$.
Hence proved.
Note: You can also solve this problem by using the Mathematical induction, i.e, firstly, consider an initial value for which the statement is true. It is to be shown that the statement is true for n = initial value=1.
Secondly, assume the statement is true for any value of n = k. Then prove the statement is true for n = k+1. We actually break n = k+1 into two parts, one part is n = k (which is already proved) and try to prove the other part.
$$\left( a+b\right)^{n} =\ ^{n} C_{0}\ a^{n}+\ ^{n} C_{1}\ a^{n-1}b+\ ^{n} C_{2}\ a^{n-2}b^{2}+\cdots +\ ^{n} C_{n}\ b^{n}$$......(1)
And after that if we are able to show that $$a^{n}-b^{n}=\left( a-b\right) \cdot k$$ (where ‘k’ is a natural number) then we can easily say that a-b is a factor of $$a^{n}-b^{n}$$.
Complete step-by-step solution:
So in order to find the solution we can write $a^{n}$ as,
$$a^{n}=\left( a\right)^{n} $$
$$\Rightarrow a^{n}=\left( a-b+b\right)^{n} $$
$$\Rightarrow a^{n}=\left\{ b+\left( a-b\right) \right\}^{n} $$
Now applying the formula (1) by taking a=a and b=a-b, we get,
$$\Rightarrow a^{n}=\ ^{n} C_{0}\ b^{n}+\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$
$$\Rightarrow a^{n}=b^{n}+\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$ [since, $${}^{n}C_{0}=1$$]
$$\Rightarrow a^{n}-b^{n}=\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right)^{2} +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n} $$
$$\Rightarrow a^{n}-b^{n}=\ ^{n} C_{1}\ b^{n-1}\left( a-b\right) +\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) \left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right) \left( a-b\right)^{n-1} $$
$$\Rightarrow a^{n}-b^{n}=\left( a-b\right) [\ ^{n} C_{1}\ b^{n-1}+\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n-1} ]$$
$$\Rightarrow a^{n}-b^{n}=\left( a-b\right) \cdot k$$
Where, $$k=[\ ^{n} C_{1}\ b^{n-1}+\ ^{n} C_{2}\ b^{n-2}\left( a-b\right) +\cdots \ +\ ^{n} C_{n}\left( a-b\right)^{n-1} ]$$ is a real numbers.
Therefore, we can say that a-b is a factor of $$a^{n}-b^{n}$$.
Hence proved.
Note: You can also solve this problem by using the Mathematical induction, i.e, firstly, consider an initial value for which the statement is true. It is to be shown that the statement is true for n = initial value=1.
Secondly, assume the statement is true for any value of n = k. Then prove the statement is true for n = k+1. We actually break n = k+1 into two parts, one part is n = k (which is already proved) and try to prove the other part.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

