
If ‘a’ and ‘b’ be the rational and irrational solution respectively of equation
\[{{\log }^{2}}(100x)+{{\log }^{2}}\left( 10x \right)=14+\log \left( \dfrac{1}{x} \right)\text{ then value of }a+{{b}^{{}^{-2}/{}_{9}}}\text{ is}\]
1) 10
2) 20
3) 30
4) 40
Answer
511.2k+ views
Hint: use the sum and divisor property of log functions to create the whole equation in single variable to find the value of x. the logarithmic function of sum and subtraction respectively is
\[\Rightarrow \text{ }\log \text{a}+\log \text{b}=\log \left( ab \right)\]
\[\Rightarrow \text{ }\log a-\text{log }b=\log \left( {}^{a}/{}_{b} \right)\]
Complete step by step solution: Let’s begin with, what the expression is given it’s
\[{{\log }^{2}}(100x)+{{\log }^{2}}(10x)=14+\log \left( \dfrac{1}{2} \right)\]
If we check the expression, we are unable to get a whole 10g as a single variable, means 10g (100x) as one variable directly. we need to convert this into single variable.
As we know the sum property of logarithmic function work as
\[\log a+\log b=\log ab\]
We can write log \[\left( 100x \right)=\log 100+\log \text{ }x\]
Similarly, \[\log \left( 10\text{ }x \right)=\log 10+\log x\]
and we know that subtraction property works as
\[\Rightarrow \log a\log b=\log \left( \dfrac{a}{b} \right)\]
If we try to use this all property in the equation, we get
\[\begin{align}
& \Rightarrow \text{ }{{\left( \log 100x \right)}^{2}}+{{\left( \log 10x \right)}^{2}}=14+\log \left( {}^{1}/{}_{x} \right) \\
& \Rightarrow \text{ }{{\left( \log 100+\log x \right)}^{2}}+{{\left( \log 10+\log x \right)}^{2}}=14+\left( 10g\text{ }1-10g\text{ }x \right) \\
\end{align}\]
Here let’s assume that, the base of 10g is 10, then the change in expression will be
\[\Rightarrow {{\left( 2+\log x \right)}^{2}}+{{\left( 1+\log x \right)}^{2}}=14+0-\log x\]
As we can see, \[\log x\] is the unknown variable only. we can assume \[\log x\] as a variable d. so that expression changes to
\[\begin{align}
& {{\left( 2+d \right)}^{2}}+{{\left( 1+d \right)}^{2}}=14-d \\
& \Rightarrow \text{ }4+4d+{{d}^{2}}+1+2d+{{a}^{2}}=14-d \\
& \Rightarrow \text{ }2{{d}^{2}}+7d-9=0 \\
\end{align}\]
Using quadratic formula, we get
\[\begin{align}
& \dfrac{d=-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\text{=}\dfrac{-7\pm \sqrt{49-4\times 2\times \left( -9 \right)}}{2\times 2} \\
& \Rightarrow \text{ }d=\dfrac{-7\pm \sqrt{121}}{4}=\dfrac{-7\pm 11}{4} \\
\end{align}\]
So, d can be \[\dfrac{-7+11}{4}v=1\text{ and }\dfrac{-7-11}{4}=\dfrac{-18}{4}=\dfrac{-9}{2}\]
Hence, we have \[d=\log x\] we need to find the value pf \[x\]
So, for \[d\text{ }=\text{ }1\] we get
\[\begin{align}
& \Rightarrow \text{ }\log 10x\text{ }=1 \\
& \Rightarrow \text{ }x=10 \\
\end{align}\]
and for \[d={}^{-9}/{}_{2}\] we get
\[\begin{align}
& \Rightarrow \log 10x={}^{-9}/{}_{2} \\
& \Rightarrow x={{10}^{{}^{-9}/{}_{2}}} \\
\end{align}\]
Hence, we get two values of x and we need the sum in the form of \[a+{{b}^{{}^{-2}/{}_{9}}}\]. As we can see the irrational form should assign to b for getting a whole no. as an output.
So, we assign \[a=10\text{ and }b={{10}^{{}^{-9}/{}_{2}}}\].
So, we get \[a+{{b}^{{}^{-2}/{}_{9}}}=10+{{\left( {{10}^{{}^{-9}/{}_{2}}} \right)}^{{}^{\times -2}/{}_{9}}}=10+10=20\]
Hence, option b is the correct answer.
Note: The logarithmic properties are used to generate a common variable.
like \[{{\log }_{b}}\text{ }a\text{ }=\text{ }\dfrac{{{\log }_{e}}a}{{{\log }_{e}}a}\text{ }=\text{ }\dfrac{{{\log }_{10}}a}{{{\log }_{10}}a}\]. In logarithm function as a variable, always try to get the similar value in logarithmic function, to treat it as a variable and form equation to obtain its roots.
\[\Rightarrow \text{ }\log \text{a}+\log \text{b}=\log \left( ab \right)\]
\[\Rightarrow \text{ }\log a-\text{log }b=\log \left( {}^{a}/{}_{b} \right)\]
Complete step by step solution: Let’s begin with, what the expression is given it’s
\[{{\log }^{2}}(100x)+{{\log }^{2}}(10x)=14+\log \left( \dfrac{1}{2} \right)\]
If we check the expression, we are unable to get a whole 10g as a single variable, means 10g (100x) as one variable directly. we need to convert this into single variable.
As we know the sum property of logarithmic function work as
\[\log a+\log b=\log ab\]
We can write log \[\left( 100x \right)=\log 100+\log \text{ }x\]
Similarly, \[\log \left( 10\text{ }x \right)=\log 10+\log x\]
and we know that subtraction property works as
\[\Rightarrow \log a\log b=\log \left( \dfrac{a}{b} \right)\]
If we try to use this all property in the equation, we get
\[\begin{align}
& \Rightarrow \text{ }{{\left( \log 100x \right)}^{2}}+{{\left( \log 10x \right)}^{2}}=14+\log \left( {}^{1}/{}_{x} \right) \\
& \Rightarrow \text{ }{{\left( \log 100+\log x \right)}^{2}}+{{\left( \log 10+\log x \right)}^{2}}=14+\left( 10g\text{ }1-10g\text{ }x \right) \\
\end{align}\]
Here let’s assume that, the base of 10g is 10, then the change in expression will be
\[\Rightarrow {{\left( 2+\log x \right)}^{2}}+{{\left( 1+\log x \right)}^{2}}=14+0-\log x\]
As we can see, \[\log x\] is the unknown variable only. we can assume \[\log x\] as a variable d. so that expression changes to
\[\begin{align}
& {{\left( 2+d \right)}^{2}}+{{\left( 1+d \right)}^{2}}=14-d \\
& \Rightarrow \text{ }4+4d+{{d}^{2}}+1+2d+{{a}^{2}}=14-d \\
& \Rightarrow \text{ }2{{d}^{2}}+7d-9=0 \\
\end{align}\]
Using quadratic formula, we get
\[\begin{align}
& \dfrac{d=-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\text{=}\dfrac{-7\pm \sqrt{49-4\times 2\times \left( -9 \right)}}{2\times 2} \\
& \Rightarrow \text{ }d=\dfrac{-7\pm \sqrt{121}}{4}=\dfrac{-7\pm 11}{4} \\
\end{align}\]
So, d can be \[\dfrac{-7+11}{4}v=1\text{ and }\dfrac{-7-11}{4}=\dfrac{-18}{4}=\dfrac{-9}{2}\]
Hence, we have \[d=\log x\] we need to find the value pf \[x\]
So, for \[d\text{ }=\text{ }1\] we get
\[\begin{align}
& \Rightarrow \text{ }\log 10x\text{ }=1 \\
& \Rightarrow \text{ }x=10 \\
\end{align}\]
and for \[d={}^{-9}/{}_{2}\] we get
\[\begin{align}
& \Rightarrow \log 10x={}^{-9}/{}_{2} \\
& \Rightarrow x={{10}^{{}^{-9}/{}_{2}}} \\
\end{align}\]
Hence, we get two values of x and we need the sum in the form of \[a+{{b}^{{}^{-2}/{}_{9}}}\]. As we can see the irrational form should assign to b for getting a whole no. as an output.
So, we assign \[a=10\text{ and }b={{10}^{{}^{-9}/{}_{2}}}\].
So, we get \[a+{{b}^{{}^{-2}/{}_{9}}}=10+{{\left( {{10}^{{}^{-9}/{}_{2}}} \right)}^{{}^{\times -2}/{}_{9}}}=10+10=20\]
Hence, option b is the correct answer.
Note: The logarithmic properties are used to generate a common variable.
like \[{{\log }_{b}}\text{ }a\text{ }=\text{ }\dfrac{{{\log }_{e}}a}{{{\log }_{e}}a}\text{ }=\text{ }\dfrac{{{\log }_{10}}a}{{{\log }_{10}}a}\]. In logarithm function as a variable, always try to get the similar value in logarithmic function, to treat it as a variable and form equation to obtain its roots.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
