
If a and b are unit vectors and |a+b| = 1, then |a-b| is equal to
[a] $\sqrt{2}$
[b] 1
[c] $\sqrt{5}$
[d] $\sqrt{3}$
Answer
615.6k+ views
Hint: Observe that the vector a+b and a-b are orthogonal to each other. Use Pythagoras theorem in triangle BCD and hence find |a-b|. Alternatively use ${{\left| \mathbf{a} \right|}^{2}}=\mathbf{a}\cdot \mathbf{a}$. Apply the formula for $\left| \mathbf{a}+\mathbf{b} \right|$ and $\left| \mathbf{a}-\mathbf{b} \right|$ and add the two results. Hence find the value of $\left| \mathbf{a}-\mathbf{b} \right|$.
Complete step-by-step answer:
Here AD = -b
Sine AB = AD = 1 unit, we have $\angle ABD=\angle ADB$.
Also, we have $\angle CAB$ is an exterior angle of triangle ABD.
Hence $\angle CAB=\angle ADB+\angle ABD=2\angle ABD$
In triangle ABC, we have AB = AC. Hence $\angle ABC=\angle ACB$
Hence by angle sum property of a triangle, we have
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=180{}^\circ \\
& \Rightarrow \angle CAB=180{}^\circ -2\angle ABC \\
\end{align}$
Hence, we have
$\begin{align}
& 2\angle ABD=180{}^\circ -2\angle ABC \\
& \Rightarrow 2\left( \angle ABD+\angle ABC \right)=180{}^\circ \\
& \Rightarrow 2\left( \angle CBD \right)=180{}^\circ \\
& \Rightarrow \angle CBD=90{}^\circ \\
\end{align}$
Hence triangle CBD is a right-angled triangle right angled at B.
Now in triangle CBD, by Pythagora’s theorem, we have
$B{{C}^{2}}+B{{D}^{2}}=C{{D}^{2}}$
Since BC = BA+AC, we have
c = a+b.
Hence, BC = 1 unit, since |a+b|=1.
Also DC = |a|+|-a|=2|a|=2.
Hence, we have
$\begin{align}
& 1+B{{D}^{2}}=4 \\
& \Rightarrow B{{D}^{2}}=3 \\
& \Rightarrow BD=\sqrt{3} \\
\end{align}$
Now, we have
BD = a+d.
Since d = -b, we have
BD = a-b.
Hence |a-b| $=\sqrt{3}$
Hence option [d] is correct.
Note: [1] Alternate proof of $\angle CBD=90{}^\circ $
As is evident from the diagram $\angle CBD$ is the angle between the vector u and c.
Hence we have $\cos \left( \angle CBD \right)=\dfrac{\mathbf{u}\cdot \mathbf{c}}{\left| \mathbf{u} \right|\left| \mathbf{c} \right|}=\dfrac{\left( \mathbf{a}-\mathbf{b} \right)\left( \mathbf{a}+\mathbf{b} \right)}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=\dfrac{{{\left| \mathbf{a} \right|}^{2}}-{{\left| \mathbf{b} \right|}^{2}}+\mathbf{a}\cdot \mathbf{b}-\mathbf{a}\cdot \mathbf{b}}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=\dfrac{1-1}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=0$
Hence we have $\angle CBD=90{}^\circ $
[2] Alternative solution: Best Method
We know that
${{\left| \mathbf{a} \right|}^{2}}=\mathbf{a}\cdot \mathbf{a}$
Hence, we have
${{\left| \mathbf{a}+\mathbf{b} \right|}^{2}}=\left( \mathbf{a}+\mathbf{b} \right)\cdot \left( \mathbf{a}+\mathbf{b} \right)=\mathbf{a}\cdot \mathbf{a}+\mathbf{a}\cdot \mathbf{b}+\mathbf{b}\cdot \mathbf{a}+\mathbf{b}\cdot \mathbf{b}={{\left| \mathbf{a} \right|}^{2}}+{{\left| \mathbf{b} \right|}^{2}}+2\mathbf{a}\cdot \mathbf{b}=2+2\mathbf{a}\cdot \mathbf{b}$
Also, we have
${{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}=\left( \mathbf{a}-\mathbf{b} \right)\cdot \left( \mathbf{a}-\mathbf{b} \right)=\mathbf{a}\cdot \mathbf{a}-\mathbf{a}\cdot \mathbf{b}-\mathbf{b}\cdot \mathbf{a}+\mathbf{b}\cdot \mathbf{b}={{\left| \mathbf{a} \right|}^{2}}+{{\left| \mathbf{b} \right|}^{2}}-2\mathbf{a}\cdot \mathbf{b}=2-2\mathbf{a}\cdot \mathbf{b}$
Adding, we get
${{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}+{{\left| \mathbf{a}+\mathbf{b} \right|}^{2}}=4$
Given that |a+b| = 1, we get
$\begin{align}
& {{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}+1=4 \\
& \Rightarrow {{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}=3 \\
& \Rightarrow \left| \mathbf{a}-\mathbf{b} \right|=\sqrt{3} \\
\end{align}$
which is the same as obtained above.
Complete step-by-step answer:
Here AD = -b
Sine AB = AD = 1 unit, we have $\angle ABD=\angle ADB$.
Also, we have $\angle CAB$ is an exterior angle of triangle ABD.
Hence $\angle CAB=\angle ADB+\angle ABD=2\angle ABD$
In triangle ABC, we have AB = AC. Hence $\angle ABC=\angle ACB$
Hence by angle sum property of a triangle, we have
$\begin{align}
& \angle CAB+\angle ABC+\angle ACB=180{}^\circ \\
& \Rightarrow \angle CAB=180{}^\circ -2\angle ABC \\
\end{align}$
Hence, we have
$\begin{align}
& 2\angle ABD=180{}^\circ -2\angle ABC \\
& \Rightarrow 2\left( \angle ABD+\angle ABC \right)=180{}^\circ \\
& \Rightarrow 2\left( \angle CBD \right)=180{}^\circ \\
& \Rightarrow \angle CBD=90{}^\circ \\
\end{align}$
Hence triangle CBD is a right-angled triangle right angled at B.
Now in triangle CBD, by Pythagora’s theorem, we have
$B{{C}^{2}}+B{{D}^{2}}=C{{D}^{2}}$
Since BC = BA+AC, we have
c = a+b.
Hence, BC = 1 unit, since |a+b|=1.
Also DC = |a|+|-a|=2|a|=2.
Hence, we have
$\begin{align}
& 1+B{{D}^{2}}=4 \\
& \Rightarrow B{{D}^{2}}=3 \\
& \Rightarrow BD=\sqrt{3} \\
\end{align}$
Now, we have
BD = a+d.
Since d = -b, we have
BD = a-b.
Hence |a-b| $=\sqrt{3}$
Hence option [d] is correct.
Note: [1] Alternate proof of $\angle CBD=90{}^\circ $
As is evident from the diagram $\angle CBD$ is the angle between the vector u and c.
Hence we have $\cos \left( \angle CBD \right)=\dfrac{\mathbf{u}\cdot \mathbf{c}}{\left| \mathbf{u} \right|\left| \mathbf{c} \right|}=\dfrac{\left( \mathbf{a}-\mathbf{b} \right)\left( \mathbf{a}+\mathbf{b} \right)}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=\dfrac{{{\left| \mathbf{a} \right|}^{2}}-{{\left| \mathbf{b} \right|}^{2}}+\mathbf{a}\cdot \mathbf{b}-\mathbf{a}\cdot \mathbf{b}}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=\dfrac{1-1}{\left| \mathbf{a}-\mathbf{b} \right|\left| \mathbf{a}+\mathbf{b} \right|}=0$
Hence we have $\angle CBD=90{}^\circ $
[2] Alternative solution: Best Method
We know that
${{\left| \mathbf{a} \right|}^{2}}=\mathbf{a}\cdot \mathbf{a}$
Hence, we have
${{\left| \mathbf{a}+\mathbf{b} \right|}^{2}}=\left( \mathbf{a}+\mathbf{b} \right)\cdot \left( \mathbf{a}+\mathbf{b} \right)=\mathbf{a}\cdot \mathbf{a}+\mathbf{a}\cdot \mathbf{b}+\mathbf{b}\cdot \mathbf{a}+\mathbf{b}\cdot \mathbf{b}={{\left| \mathbf{a} \right|}^{2}}+{{\left| \mathbf{b} \right|}^{2}}+2\mathbf{a}\cdot \mathbf{b}=2+2\mathbf{a}\cdot \mathbf{b}$
Also, we have
${{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}=\left( \mathbf{a}-\mathbf{b} \right)\cdot \left( \mathbf{a}-\mathbf{b} \right)=\mathbf{a}\cdot \mathbf{a}-\mathbf{a}\cdot \mathbf{b}-\mathbf{b}\cdot \mathbf{a}+\mathbf{b}\cdot \mathbf{b}={{\left| \mathbf{a} \right|}^{2}}+{{\left| \mathbf{b} \right|}^{2}}-2\mathbf{a}\cdot \mathbf{b}=2-2\mathbf{a}\cdot \mathbf{b}$
Adding, we get
${{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}+{{\left| \mathbf{a}+\mathbf{b} \right|}^{2}}=4$
Given that |a+b| = 1, we get
$\begin{align}
& {{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}+1=4 \\
& \Rightarrow {{\left| \mathbf{a}-\mathbf{b} \right|}^{2}}=3 \\
& \Rightarrow \left| \mathbf{a}-\mathbf{b} \right|=\sqrt{3} \\
\end{align}$
which is the same as obtained above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

