
If \[a = 5\] and \[b = 403\], then find the value of \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\].
Answer
497.7k+ views
Hint:
Here, we will find the value of the given expression. We will simplify the given expression using rules of exponents and algebraic identities. Then, we will substitute the given values and simplify the expression further to obtain the required answer.
Complete step by step solution:
We will simplify the given expression using algebraic identities and then substitute the given values to get the answer.
First, we will take the L.C.M. of the terms in the parentheses and add them.
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{{a + b}}{{ab}}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We know that \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\].
Therefore, we can simplify the expression to get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Now, we can rewrite the expression as
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We know that the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\].
Substituting \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\] in the identity, we get
\[{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2} = {\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)\]
Next, we will substitute \[{\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right) = {\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2}\] in the expression \[\left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\].
Thus, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{{a + b}}{{ab}}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can rewrite the expression using the rule of exponents \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].
Therefore, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{{{\left( {ab} \right)}^2}}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{ab}}\]
Therefore, we have simplified the expression to obtain a much simpler expression.
We will substitute \[a = 5\] and \[b = 403\] to get the required answer.
Substituting \[a = 5\] and \[b = 403\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{5 \times 403}}\]
Multiplying 5 by 403, we get the value of the expression as
\[\therefore\] We get the value of the expression \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\] as \[\dfrac{1}{{2015}}\].
Note:
It is important for us to remember the rules of exponents are \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\] and \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Also, the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]. We can also solve the question by directly substituting the values in the given expression but it will include much larger numbers. Thus, making it difficult for us to calculate. For example, we will need to take the L.C.M. of \[{5^2}\], \[{403^2}\], and \[403 \times 5\] to solve the first parentheses.
Here, we will find the value of the given expression. We will simplify the given expression using rules of exponents and algebraic identities. Then, we will substitute the given values and simplify the expression further to obtain the required answer.
Complete step by step solution:
We will simplify the given expression using algebraic identities and then substitute the given values to get the answer.
First, we will take the L.C.M. of the terms in the parentheses and add them.
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{{a + b}}{{ab}}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We know that \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\].
Therefore, we can simplify the expression to get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Now, we can rewrite the expression as
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We know that the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\].
Substituting \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\] in the identity, we get
\[{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2} = {\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)\]
Next, we will substitute \[{\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right) = {\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2}\] in the expression \[\left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\].
Thus, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{{a + b}}{{ab}}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can rewrite the expression using the rule of exponents \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].
Therefore, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{{{\left( {ab} \right)}^2}}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{ab}}\]
Therefore, we have simplified the expression to obtain a much simpler expression.
We will substitute \[a = 5\] and \[b = 403\] to get the required answer.
Substituting \[a = 5\] and \[b = 403\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{5 \times 403}}\]
Multiplying 5 by 403, we get the value of the expression as
\[\therefore\] We get the value of the expression \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\] as \[\dfrac{1}{{2015}}\].
Note:
It is important for us to remember the rules of exponents are \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\] and \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Also, the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]. We can also solve the question by directly substituting the values in the given expression but it will include much larger numbers. Thus, making it difficult for us to calculate. For example, we will need to take the L.C.M. of \[{5^2}\], \[{403^2}\], and \[403 \times 5\] to solve the first parentheses.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

How many crores make 10 million class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Find HCF and LCM of 120 and 144 by using Fundamental class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE
