
If \[a = 5\] and \[b = 403\], then find the value of \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\].
Answer
570k+ views
Hint:
Here, we will find the value of the given expression. We will simplify the given expression using rules of exponents and algebraic identities. Then, we will substitute the given values and simplify the expression further to obtain the required answer.
Complete step by step solution:
We will simplify the given expression using algebraic identities and then substitute the given values to get the answer.
First, we will take the L.C.M. of the terms in the parentheses and add them.
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{{a + b}}{{ab}}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We know that \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\].
Therefore, we can simplify the expression to get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Now, we can rewrite the expression as
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We know that the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\].
Substituting \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\] in the identity, we get
\[{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2} = {\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)\]
Next, we will substitute \[{\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right) = {\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2}\] in the expression \[\left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\].
Thus, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{{a + b}}{{ab}}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can rewrite the expression using the rule of exponents \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].
Therefore, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{{{\left( {ab} \right)}^2}}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{ab}}\]
Therefore, we have simplified the expression to obtain a much simpler expression.
We will substitute \[a = 5\] and \[b = 403\] to get the required answer.
Substituting \[a = 5\] and \[b = 403\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{5 \times 403}}\]
Multiplying 5 by 403, we get the value of the expression as
\[\therefore\] We get the value of the expression \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\] as \[\dfrac{1}{{2015}}\].
Note:
It is important for us to remember the rules of exponents are \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\] and \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Also, the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]. We can also solve the question by directly substituting the values in the given expression but it will include much larger numbers. Thus, making it difficult for us to calculate. For example, we will need to take the L.C.M. of \[{5^2}\], \[{403^2}\], and \[403 \times 5\] to solve the first parentheses.
Here, we will find the value of the given expression. We will simplify the given expression using rules of exponents and algebraic identities. Then, we will substitute the given values and simplify the expression further to obtain the required answer.
Complete step by step solution:
We will simplify the given expression using algebraic identities and then substitute the given values to get the answer.
First, we will take the L.C.M. of the terms in the parentheses and add them.
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{{a + b}}{{ab}}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\]
We know that \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\].
Therefore, we can simplify the expression to get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{ab}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Now, we can rewrite the expression as
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We know that the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\].
Substituting \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\] in the identity, we get
\[{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2} = {\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)\]
Next, we will substitute \[{\left( {\dfrac{1}{a}} \right)^2} + {\left( {\dfrac{1}{b}} \right)^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right) = {\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)^2}\] in the expression \[\left\{ {{{\left( {\dfrac{1}{a}} \right)}^2} + {{\left( {\dfrac{1}{b}} \right)}^2} + 2\left( {\dfrac{1}{a}} \right)\left( {\dfrac{1}{b}} \right)} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\].
Thus, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
Taking the L.C.M. of \[\dfrac{1}{a}\] and \[\dfrac{1}{b}\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {{{\left( {\dfrac{{a + b}}{{ab}}} \right)}^2}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can rewrite the expression using the rule of exponents \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].
Therefore, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{{{\left( {ab} \right)}^2}}}} \right\}\left\{ {\dfrac{{ab}}{{{{\left( {a + b} \right)}^2}}}} \right\}\]
We can cancel out the terms that are common in the numerator and the denominator.
Cancelling the terms, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{ab}}\]
Therefore, we have simplified the expression to obtain a much simpler expression.
We will substitute \[a = 5\] and \[b = 403\] to get the required answer.
Substituting \[a = 5\] and \[b = 403\] in the expression, we get
\[ \Rightarrow \left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right] = \dfrac{1}{{5 \times 403}}\]
Multiplying 5 by 403, we get the value of the expression as
\[\therefore\] We get the value of the expression \[\left\{ {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{2}{{a + b}}\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)} \right\}\left[ {{{\left\{ {\dfrac{{{{\left( {a + b} \right)}^2}}}{{ab}}} \right\}}^{ - 1}}} \right]\] as \[\dfrac{1}{{2015}}\].
Note:
It is important for us to remember the rules of exponents are \[{\left( {\dfrac{a}{b}} \right)^{ - 1}} = \dfrac{b}{a}\] and \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Also, the square of the sum of two numbers is given by the algebraic identity \[{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy\]. We can also solve the question by directly substituting the values in the given expression but it will include much larger numbers. Thus, making it difficult for us to calculate. For example, we will need to take the L.C.M. of \[{5^2}\], \[{403^2}\], and \[403 \times 5\] to solve the first parentheses.
Recently Updated Pages
Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

Repeated addition of the same number is called a addition class 7 maths CBSE


