
If \[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2,{\text{ }}{a^3} + {b^3} + {c^3} = 3\] then find the value of \[{a^4} + {b^4} + {c^4} = ?\]
Answer
493.5k+ views
Hint: We know that \[{a^4} + {b^4} + {c^4} = {\left( {{a^2} + {b^2} + {c^2}} \right)^2} - 2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\] .So, in order to solve this, we will first find out the value of \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\] . Now, \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\] can be written as \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = {\left( {ab + bc + ca} \right)^2} - 2abc\left( {b + c + a} \right)\] .For this, we will first need to find out the value of \[ab + bc + ca\] by using the concept \[{\left( {a + b + c} \right)^2} - \left( {{a^2} + {b^2} + {c^2}} \right) = 2\left( {ab + bc + ca} \right)\] and then the value of \[abc\] using the formula \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right)\] . After that, just substitute the values required accordingly and we get the required result.
Complete step by step answer:
We have given
\[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2,{\text{ }}{a^3} + {b^3} + {c^3} = 3\]
And we have to find the value of \[{a^4} + {b^4} + {c^4}\]
We know that
\[{a^4} + {b^4} + {c^4} = {\left( {{a^2} + {b^2} + {c^2}} \right)^2} - 2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right){\text{ }} - - - \left( 1 \right)\]
Now, let’s fist find out the value of \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\]
Now, \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\] can be written as
\[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = {\left( {ab + bc + ca} \right)^2} - 2abc\left( {b + c + a} \right){\text{ }} - - - \left( 2 \right)\]
We know that
\[{\left( {a + b + c} \right)^2} - \left( {{a^2} + {b^2} + {c^2}} \right) = 2\left( {ab + bc + ca} \right){\text{ }} - - - \left( 3 \right)\]
Now it is given that
\[a + b + c = 1\] and \[{a^2} + {b^2} + {c^2} = 2\]
So, on substituting the values in equation \[\left( 3 \right)\] we get
\[{\left( 1 \right)^2} - \left( 2 \right) = 2\left( {ab + bc + ca} \right)\]
\[ \Rightarrow 2\left( {ab + bc + ca} \right) = - 1\]
On dividing by \[2\] we get
\[ \Rightarrow \left( {ab + bc + ca} \right) = \dfrac{{ - 1}}{2}{\text{ }} - - - \left( X \right)\]
Now we know that
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right){\text{ }} - - - \left( 4 \right)\]
It is given that
\[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2\] and \[{a^3} + {b^3} + {c^3} = 3\]
So, on substituting the values in the equation \[\left( 4 \right)\] we get
\[3 - 3abc = \left( 1 \right)\left( {2 - \left( {ab + bc + ca} \right)} \right)\]
\[ \Rightarrow 3 - 3abc = \left( 1 \right)\left( {2 - \left( {\dfrac{{ - 1}}{2}} \right)} \right)\] from equation \[\left( X \right)\]
After simplification, we get
\[ \Rightarrow 3 - 3abc = \dfrac{5}{2}\]
\[ \Rightarrow 3 - \dfrac{5}{2} = 3abc\]
On subtracting the terms on the left-hand side, we get
\[ \Rightarrow \dfrac{1}{2} = 3abc\]
On dividing by \[3\] we get
\[abc = \dfrac{1}{6}{\text{ }} - - - \left( Y \right)\]
Now on substituting the values from equation \[\left( X \right)\] and equation \[\left( Y \right)\] in equation \[\left( 2 \right)\] we get
\[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = {\left( {\dfrac{{ - 1}}{2}} \right)^2} - 2\left( {\dfrac{1}{6}} \right)\left( 1 \right){\text{ }}\]
\[ \Rightarrow \left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = \dfrac{1}{4} - \left( {\dfrac{1}{3}} \right)\]
On subtracting the terms on the right-hand side, we get
\[ \Rightarrow \left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = \dfrac{{ - 1}}{{12}}{\text{ }} - - - \left( Z \right)\]
Now on substituting the value from equation \[\left( Z \right)\] in equation \[\left( 1 \right)\] we get
\[{a^4} + {b^4} + {c^4} = {\left( 2 \right)^2} - 2\left( {\dfrac{{ - 1}}{{12}}} \right){\text{ }}\]
\[ \Rightarrow {a^4} + {b^4} + {c^4} = 4 + \dfrac{1}{6}\]
On adding the terms on the right-hand side, we get
\[ \Rightarrow {a^4} + {b^4} + {c^4} = \dfrac{{25}}{6}\]
Hence, we get the required result.
Note:
The first mistake students make while solving this question is to answer by looking at the given pattern in the question. i.e., in the question we have given \[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2,{\text{ }}{a^3} + {b^3} + {c^3} = 3\] .That’s why most students think the value of \[{a^4} + {b^4} + {c^4}\] will be \[4\] but this is the wrong approach to the question. Always try to solve the question using the common identities.
Complete step by step answer:
We have given
\[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2,{\text{ }}{a^3} + {b^3} + {c^3} = 3\]
And we have to find the value of \[{a^4} + {b^4} + {c^4}\]
We know that
\[{a^4} + {b^4} + {c^4} = {\left( {{a^2} + {b^2} + {c^2}} \right)^2} - 2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right){\text{ }} - - - \left( 1 \right)\]
Now, let’s fist find out the value of \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\]
Now, \[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\] can be written as
\[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = {\left( {ab + bc + ca} \right)^2} - 2abc\left( {b + c + a} \right){\text{ }} - - - \left( 2 \right)\]
We know that
\[{\left( {a + b + c} \right)^2} - \left( {{a^2} + {b^2} + {c^2}} \right) = 2\left( {ab + bc + ca} \right){\text{ }} - - - \left( 3 \right)\]
Now it is given that
\[a + b + c = 1\] and \[{a^2} + {b^2} + {c^2} = 2\]
So, on substituting the values in equation \[\left( 3 \right)\] we get
\[{\left( 1 \right)^2} - \left( 2 \right) = 2\left( {ab + bc + ca} \right)\]
\[ \Rightarrow 2\left( {ab + bc + ca} \right) = - 1\]
On dividing by \[2\] we get
\[ \Rightarrow \left( {ab + bc + ca} \right) = \dfrac{{ - 1}}{2}{\text{ }} - - - \left( X \right)\]
Now we know that
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right){\text{ }} - - - \left( 4 \right)\]
It is given that
\[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2\] and \[{a^3} + {b^3} + {c^3} = 3\]
So, on substituting the values in the equation \[\left( 4 \right)\] we get
\[3 - 3abc = \left( 1 \right)\left( {2 - \left( {ab + bc + ca} \right)} \right)\]
\[ \Rightarrow 3 - 3abc = \left( 1 \right)\left( {2 - \left( {\dfrac{{ - 1}}{2}} \right)} \right)\] from equation \[\left( X \right)\]
After simplification, we get
\[ \Rightarrow 3 - 3abc = \dfrac{5}{2}\]
\[ \Rightarrow 3 - \dfrac{5}{2} = 3abc\]
On subtracting the terms on the left-hand side, we get
\[ \Rightarrow \dfrac{1}{2} = 3abc\]
On dividing by \[3\] we get
\[abc = \dfrac{1}{6}{\text{ }} - - - \left( Y \right)\]
Now on substituting the values from equation \[\left( X \right)\] and equation \[\left( Y \right)\] in equation \[\left( 2 \right)\] we get
\[\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = {\left( {\dfrac{{ - 1}}{2}} \right)^2} - 2\left( {\dfrac{1}{6}} \right)\left( 1 \right){\text{ }}\]
\[ \Rightarrow \left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = \dfrac{1}{4} - \left( {\dfrac{1}{3}} \right)\]
On subtracting the terms on the right-hand side, we get
\[ \Rightarrow \left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) = \dfrac{{ - 1}}{{12}}{\text{ }} - - - \left( Z \right)\]
Now on substituting the value from equation \[\left( Z \right)\] in equation \[\left( 1 \right)\] we get
\[{a^4} + {b^4} + {c^4} = {\left( 2 \right)^2} - 2\left( {\dfrac{{ - 1}}{{12}}} \right){\text{ }}\]
\[ \Rightarrow {a^4} + {b^4} + {c^4} = 4 + \dfrac{1}{6}\]
On adding the terms on the right-hand side, we get
\[ \Rightarrow {a^4} + {b^4} + {c^4} = \dfrac{{25}}{6}\]
Hence, we get the required result.
Note:
The first mistake students make while solving this question is to answer by looking at the given pattern in the question. i.e., in the question we have given \[a + b + c = 1,{\text{ }}{a^2} + {b^2} + {c^2} = 2,{\text{ }}{a^3} + {b^3} + {c^3} = 3\] .That’s why most students think the value of \[{a^4} + {b^4} + {c^4}\] will be \[4\] but this is the wrong approach to the question. Always try to solve the question using the common identities.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

